Supplementary Material for GRACE: Generalizing Robot-Assisted Caregiving with User Functionality Embeddings

I. SIMULATED ROBOT EXPERIMENTS DETAILS

- 1) **Handover**: A user sitting in a wheelchair asks the robot to hand over an object in the environment. The robot selects a 3D handover position.
 - *Generalization Scenario*: The initial object location is randomized.
 - Success: The selected handover position is within the user's task-space fROM (computed by running forward kinematics on Θ_u).
 - Agency: Task-space distance between the user's resting position and handover.
- 2) **Rehab**: A robot guides a user in a wheelchair through an arm stretching exercise where the robot selects target joint positions and the user attempts to reach them.
 - *Generalization Scenario*: The initial joint positions of the user are sampled from their fROM.
 - *Success*: The target joint positions selected by the robot are within the user's fROM.
 - *Agency*: Joint-space distance between the initial and target positions.
- 3) **Dressing**: A robot selects a position at which to hold the arm-hole of a garment. The user attempts to reach that position and then extends their arm through the sleeve.
 - *Generalization Scenario*: The angle at which the robot should approach the user is randomized.
 - Success: The user can reach the selected position and subsequently extend their elbow by 45°.
 - *Agency*: Task-space distance between the user's resting position and the arm-hole.
- 4) **Bathing**: A robot is performing assisted bed bathing. The user's arm must be repositioned. The robot decides whether to ask the user to independently move their arm, or to move their arm for them.
 - *Generalization Scenario*: The target joint positions for repositioning are randomized.
 - *Success*: Either the robot directly moves the user's arm, or the robot asks the user to independently move and their fROM allows them to do so.
 - Agency: Binary: 1 if the user moves their arm independently and 0 otherwise.

II. ADDITIONAL REFERENCES

We include additional references for the rebuttal response here [1] [2] [3] [4] [5] [6] [7].

TABLE I: Additional robot experiments across 5 users, 3 methods, and 3 conditions, separated by condition. GT refers to Ground Truth, UA refers to User Agnostic. We report the normalized mean value from user feedback.

GRACE performs similarly to GT, demonstrating adaptive assistance by maintaining appropriate user effort, sense of agency, and a high success rate. In contrast, the User-Agnostic model required significant effort in severe mobility conditions, leading to frequent failures, and showed reduced effort and sense of agency in conditions with mild limitations.

Method	Condition	Success	Effort	Agency	Comfort	Safety
GT	2 (severe)	0.93	0.60	0.68	0.64	0.72
GRACE	2 (severe)	0.93	0.64	0.64	0.64	0.84
UA	2 (severe)	0.53	0.88	0.84	0.40	0.96
GT	3 (severe)	0.93	0.72	0.64	0.64	0.92
GRACE	3 (severe)	0.93	0.68	0.76	0.68	0.88
UA	3 (severe)	0.47	0.84	0.84	0.48	0.76
GT	4 (mild)	1.0	0.44	0.64	0.84	0.80
GRACE	4 (mild)	1.0	0.56	0.60	0.88	0.96
UA	4 (mild)	1.0	0.52	0.56	0.84	0.80

Forearm Length (L)	26.5	32	28.5	28	25	29.3	27	29.5	32.5	29.5	26.5
Arm Length (L)	34	36	34.5	38	32.5	36.9	34.5	37.5	32.5	38.5	33
Forearm Length (R)	26.5	32.2	28	28	25	31	27.5	29.5	33.5	29.5	27.3
Arm Length (R)	34.3	38.5	36	39	33.5	38	35.5	38	32.3	38.5	33.3
Shoulder Width	33	42.5	36	34.5	33.5	37	37.5	36	31.5	37	32
Waist Circ.	93.5	116	82	85.5	64	100.5	96.5	74	94.5	86.5	66.5
Chest Circ.	104.5	1	87	97.7	81	108	96.5	89	96	67	82
Torso Length	45.5	63	50.5	50.5	43	54	49	49	45.5	52.5	52
Upper Body Length	81.4	96.5	89.5	06	84	93.4	83	89.5	86.5	84.5	87
Height	160	185	176	174.8	163	182	170	177.5	180	173	163
Exercise	3x/wk, biking	2x/wk, gym	gym, sports	gym	2x/month, gym	5x/wk, gym	4x/wk, gym	2x/wk, gym	2x/wk, gym	5x/wk, gym	3x/wk, gvm
Race	South Asian	Asian	Asian	White	Asian	Asian	Asian	South Asian	South Asian	South Asian	Asian
Gender	ц	М	М	М	ц	Μ	Μ	Μ	Μ	Μ	ц
Age	24	21	20	30	22	20	20	22	28	24	20
Subject	-	2	3	4	5	9	7	8	6	10	11

1	<i></i>
í	7
ţ	4
(С.
Ì	\sim
	\mathbf{S}
	Ð.
ľ	5
	ă.
	Ξ.
1	Ħ.
	5
	õ
	a
	Ľ,
	σ
	e
	Ħ
	5
	g.
	З.
	Ħ
\$	
	0
	\mathbf{r}
	Ě
Ĩ	Ē
	Ħ
	d)
	ĕ
i	
1	
	s
ľ	H
	a
	ã
•	2
•	Ħ.
1	
	=
,	a
4	Pai
ļ	ot Pai
ļ	of Pai
Ę	s of Pai
۲	ics of Pai
۲	trics of Pai
	letrics of Pai
	metrics of Pai
	ometrics of Pai
	pometrics of Pai
	copometrics of Pai
	hropometrics of Pai
	ithropometrics of Pai
	Anthropometrics of Pai
	Anthropometrics of Pai
	d Anthropometrics of Pai
	nd Anthropometrics of Pai
	and Anthropometrics of Pai
	s and Anthropometrics of Pai
	ics and Anthropometrics of Pai
	hics and Anthropometrics of Pai
	phics and Anthropometrics of Pai
	aphics and Anthropometrics of Pai
	graphics and Anthropometrics of Pai
	ographics and Anthropometrics of Pai
	nographics and Anthropometrics of Pai
	emographics and Anthropometrics of Pai
	Demographics and Anthropometrics of Pai
	Demographics and Anthropometrics of Pai
	I: Demographics and Anthropometrics of Pai
	II: Demographics and Anthropometrics of Pai
	E II: Demographics and Anthropometrics of Pai
	LE II: Demographics and Anthropometrics of Pai
	3LE II: Demographics and Anthropometrics of Pai
	ABLE II: Demographics and Anthropometrics of Pai
	ABLE II: Demographics and Anthropometrics of Pai

REFERENCES

- T. Grant, Y. Thomas, P. Gossman, and L. Berragan, "The use of simulation in occupational therapy education: A scoping review," *Australian Occupational Therapy Journal*, vol. 68, no. 4, pp. 345–356, 2021.
- [2] S. Bennett, S. Rodger, C. Fitzgerald, and L. Gibson, "Simulation in Occupational Therapy Curricula: A literature review," *Australian Occupational Therapy Journal*, vol. 64, no. 4, pp. 314–327, 2017.
- [3] S. Keyvanian, M. J. Johnson, and N. Figueroa, "Learning realistic joint space boundaries for range of motion analysis of healthy and impaired human arms," 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids), pp. 1–8, 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:265281552
- [4] D. T. H. Nguyen and D. T. T. Trinh, "Correlation of the Fugl Meyer assessment, Motricity Index and BarthelIndex scales in the assessment of rehabilitation in post-stroke patients," *Journal of University of Medicine* and Pharmacy at Ho Chi Minh City, 2023.
- [5] T. Platz, C. Pinkowski, F. v. Wijck, I.-H. Kim, P. d. Bella, and G. Johnson, "Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: a multicentre study," *Clinical Rehabilitation*, vol. 19, no. 4, pp. 404–411, 2005.
- [6] G. Kwakkel, N. A. Lannin, K. Borschmann, C. English, M. Ali, L. Churilov, G. Saposnik, C. Winstein, E. E. v. Wegen, S. L. Wolf, J. W. Krakauer, and J. Bernhardt, "Standardized measurement of sensorimotor recovery in stroke trials: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable," *International Journal of Stroke*, vol. 12, no. 5, pp. 451–461, 2017.
- [7] R. Madan, R. K. Jenamani, V. T. Nguyen, A. Moustafa, X. Hu, K. Dimitropoulou, and T. Bhattacharjee, "SPARCS: Structuring Physically Assistive Robotics for Caregiving with Stakeholders-in-the-loop," arXiv, 2022.