A Human-in-the-Loop Confidence-Aware Failure Recovery
Framework for Modular Robot Policies

Rohan Banerjee*
Cornell University

Jiaying Fang

Cornell University

Sarah Dean’
Cornell University

In Lab Studies - Individuals With
Emulated Mobility Limitations

4

Krishna Palempalli*
Cornell University

Alif Abdullah

Cornell University

Bohan Yang*
Cornell University

Tom Silver
Princeton University

Tapomayukh Bhattacharjee’

Cornell University

Goal: Acquire Green Beans.

2nd Execution Attempt

(%)

3rd Execution Attempt

T = ¥ = v
In this example, the autonomous pipeline suffers from incorrect skewering point from
skill parameter selection module and cannot recover from failure!

.) ¢ Food Type Bounding Box oo ion Skill Parameter °
" ; ® Identification Selection Nr T Selection
d 9 g Module M, Module M, s Module M, 15 Execution Attempt
- ? S, || Bl Identify Green © petect Green @), skewer Green @), Detect Skewer
= << g Beans 2= Beans =) Beans I—» Point
’ “ 8
]
- <
> [Y <=

Failures can
arise from
any module

bl gl

In Home Studies - Individuals
With Mobility Limitations

-1

|
W Confidence 05| =29
2 .

@ Query Cost
- %
o

My

I

Confidence Gains 1

Human-in-the-loop Framework

° Twill query for M,
o Th B AT because confidence
Qur Human-in-the-loop appfoach p e
e aims to recover from such failures! A cost (qy).
My, .., M;)/ :> é S ::>
10 @

i

o

When queried, the user
interacts with the interface to

08 skewering point again! [o o o] provide feedback.

2 Execution Attempt

Query Costs q

Autonomous
Output 4

= amp ?

User Feedback

Our pipeline recovered from failure and
successfully acquired green beans!

Figure 1: Our human-in-the-loop framework for failure recovery leverages confidence estimates from a modular policy, along
with predicted estimates of user workload, to decide what to ask and when to act autonomously.

Abstract

Robots operating in unstructured human environments inevitably
encounter failures, especially in robot caregiving scenarios. While
humans can often help robots recover, excessive or poorly targeted
queries impose unnecessary cognitive and physical workload on the
human partner. We present a human-in-the-loop failure-recovery
framework for modular robotic policies, where a policy is composed
of distinct modules such as perception, planning, and control,
any of which may fail and often require different forms of
human feedback. Our framework integrates calibrated estimates
of module-level uncertainty with models of human intervention
cost to decide which module to query and when to query the
human. It separates these two decisions: a module selector identifies
the module most likely responsible for failure, and a querying
algorithm determines whether to solicit human input or act

* Equal Contribution 1 Equal Advising # rbb242@cornell.edu

Acknowledgement: This work was partly funded by NSF CCF 2312774 and NSF
OAC-2311521, a LinkedIn Research Award, NSF IIS-244213, NSF IIS #2132846, CAREER
#2238792,a PCCW Affinito-Stewart Award, an AI2050 Early Career Fellowship program
at Schmidt Sciences, and NIH #T32HD113301. Full acknowledgements in Appendix I.

29089

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

HRI °26, Edinburgh, Scotland, UK

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2128-1/2026/03

https://doi.org/10.1145/3757279.3788668

autonomously. We evaluate several module-selection strategies and
querying algorithms in controlled synthetic experiments, revealing
trade-offs between recovery efficiency, robustness to system and
user variables, and user workload. Finally, we deploy the framework
on a robot-assisted bite acquisition system and demonstrate, in
studies involving individuals with both emulated and real mobility
limitations, that it improves recovery success while reducing the
workload imposed on users. Our results highlight how explicitly
reasoning about both robot uncertainty and human effort can enable
more efficient and user-centered failure recovery in collaborative
robots. Supplementary materials and videos can be found at:
emprise.cs.cornell.edu/modularhil.

CCS Concepts

+ Human-centered computing — Accessibility technologies;
« Computer systems organization — Robotics.

Keywords

Human-in-the-loop Methods, Failure Recovery

ACM Reference Format:

Rohan Banerjee¥, Krishna Palempalli*, Bohan Yang®, Jiaying Fang, Alif
Abdullah, Tom Silver, Sarah Dean*, and Tapomayukh Bhattacharjeef. 2026.
A Human-in-the-Loop Confidence-Aware Failure Recovery Framework for
Modular Robot Policies. In Proceedings of the 21st ACM/IEEE International
Conference on Human-Robot Interaction (HRI ’26), March 16-19, 2026,

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1145/3757279.3788668
http://emprise.cs.cornell.edu/modularhil

HRI "26, March 16-19, 2026, Edinburgh, Scotland, UK

Edinburgh, Scotland, UK. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3757279.3788668

1 Introduction

Robots deployed in the wild inevitably fail, especially when
assisting individuals with mobility limitations in performing
activities of daily living (ADLs) in unstructured home
environments [13, 37, 40]. While humans can help robots
recover [3, 10], excessive querying imposes cognitive and
physical workload on the human partner [16, 36]. Designing
robots that know what and when to ask humans is therefore
central to effective human-robot interaction. We focus on modular
robot systems, which are more interpretable than end-to-end
vision-language—action (VLA) policies, and thus more amenable
to structured failure recovery. However, failures can arise in any
of the perception, planning, or control modules, each requiring
different forms of human feedback.

Failure recovery in modular systems is difficult for two
reasons. First, identifying which module has failed is non-trivial;
a perception error can cascade into planning and execution,
making it unclear where intervention is most effective. Second,
module confidence scores are often miscalibrated and do not
reliably predict whether a task will succeed. Over-querying risks
frustrating users, while under-querying risks repeated failures that
undermine both task performance and trust. Properly balancing
task success and human workload! lies at the heart of collaborative
autonomy. By combining confidence-aware reasoning with models
of human workload [3, 11, 32], we can design workload-aware
interaction strategies that recover from failures more efficiently
with high user satisfaction. This is crucial in assistive settings such
as physical robot caregiving, where reliable task performance and
user experience affect the acceptability of robot assistance.

To address the challenge of balancing recovery efficiency with
user satisfaction, we propose a human-in-the-loop failure recovery
framework for modular robot policies that integrates calibrated
module-level uncertainty with models of human workload. Our
framework is broadly applicable to modular architectures, even
VLAs themselves (which can be treated as unitary modules). The

framework makes two key decisions at every recovery attempt.

First, a module selector determines which component of the modular
policy to query, e.g. perception or planning. Second, a querying
algorithm determines whether to query the human at all or to act
autonomously. This decision is critical for trading off the expected
gain in task-level success against user workload. We formulate
these decisions within a sequential decision-making framework,
and evaluate several module-selection strategies and querying
algorithms. We then deploy the framework on a robot-assisted
bite acquisition system [3, 13, 14, 37], demonstrating improved
recovery success and reduced user querying workload across
studies involving individuals with both emulated and real mobility
limitations. Our work makes the following novel contributions:

e We propose a human-in-the-loop failure-recovery framework
for modular robotic policies that makes two complementary
decisions: a module selector chooses which component of the
policy to query, and a querying algorithm decides whether and
when to solicit human input versus act autonomously.

e We incorporate calibrated estimates of module-level uncertainty
together with models of human intervention cost to guide both
decisions, enabling robots to recover more efficiently and to avoid
unnecessary queries.

n this work, we use the terms workload and query cost interchangeably.

Rohan Banerjee et al.

e We conduct systematic evaluations of several module-selection
strategies (e.g. brute-force, graph-based, binary-tree, and mixed
-integer programming (MIP) selectors) and querying algorithms
(e.g. execute-first, query-then-execute, query-until-confident,
and workload-aware variants) in controlled synthetic experiments,
revealing trade-offs in robustness to system and user variables,
efficiency, and user workload.

e We demonstrate the approach in a real-world robot-assisted bite
acquisition task, achieving higher recovery success and lower
user querying workload compared to baselines in two in-lab
studies with emulated limitations and an in-home study involving
users with real mobility limitations.

2 Related Work

Anomaly detection and recovery in robotics. Robotic
policies, whether end-to-end or modular, are prone to failure
during execution, especially in unstructured environments or when
encountering novel objects. Despite recent advances in end-to-end
robot learning, these approaches can be difficult to interpret
[1, 8, 41]. In contrast, modular methods can offer more predictable
and controllable performance in certain scenarios. In this work, we
focus on full-stack modular methods that consider failure detection
and recovery across different modules of a robot system. While
some human-in-the-loop approaches [2, 10, 22] assume that the
system is in a failure state where recovery is required, our approach
includes failure detection using confidence estimates.

It is natural to represent such problems using a graph
representation, as in prior work on online approaches for robot
failure detection and recovery [2, 7, 29]. Additionally, the overall
interaction process can be modeled by certain types of graphs,
ranging from finite-state machines [7], MDPs/POMDPs [12, 29],
and Behavior Trees [2, 6, 26]. Although graph representations
have been widely studied in prior work, our method goes further
by not only modeling systems using graphs but also leveraging
graph algorithms to select which modules to query for information
or intervention. In particular, two of our four proposed methods
for selecting which modules to query (which we denote module
selectors) are graph-based methods.

Robots that ask for help. Robot systems may decide to query
humans on the basis of several different criteria. Some approaches
ask for help when a failure is detected after a robot action has
been executed [21, 38], some based on a confidence estimate about
potential robot actions to take [27, 33], and others based on an
estimate about the potential information gain that could arise from
soliciting human feedback [10, 30]. Departing from existing work,
our query rules depend on both module confidence values and
estimated human workload costs of querying.

The types of feedback the robot can ask for can also vary, ranging
from natural language [5, 33, 35], to actions [21, 38, 39], to labels [5].
Our framework that detects the module to be queried is agnostic to
the specific types of feedback. Unlike prior work that queries for a
single action-selection module [19, 33] or reward model [10], we
simultaneously consider asking for help for multiple modules in a
full-stack policy architecture.

3 Problem Formulation

Module graph. We assume that our robot policy architecture ¥ :
S — A s structured as a module graph Gy, which describes the
relationships between the N modules in the architecture. Here,
S represents the policy input state (e.g. RGB-D images), and A
represents the policy action output (e.g. robot end-effector pose).
The vertices in Gy are modules, and an edge exists from one module
M; to another module M; if the output of M; is an input to M;.

https://doi.org/10.1145/3757279.3788668
https://doi.org/10.1145/3757279.3788668

A Human-in-the-Loop Confidence-Aware Failure Recovery Framework for Modular Robot Policies

HRI ’26, March 16-19, 2026, Edinburgh, Scotland, UK

& You should skewer the banana!

- Module
Bite Confidences .
— Acquisition ——— Query Policy

Archif twirl
S * I]

¥ M; M My M,

l Next Query

Query Human Interface
(Voice input . ¥ or Click the Tablet)
Auto
—

Robot Execution

2 If the result is a failure, try again!

]
Bite Acquisition Architecture
Food Type GPT-40
Identification (VLM) : Banana
M
Bounding Box
Selection Grounding
M: DINO (VLM)
Skill N
Selection GPT-to
(VLM)
M,
Skill
Parameter
Selection RT-1(VLA)
M,

Wb .
o [o
8 | -
2 e ' =
g 1 =
=] 0
£ 7
3, ’* &

M, M,
F(l-c)>qs Else

Query Auto

Figure 2: Overall human-in-the-loop decision failure recovery framework, grounded in the robot-assisted bite acquisition
domain. The recovery framework first calls a module selector to decide which of the modules to query for (e.g. the skill selector).
The framework then calls a querying algorithm, which decides whether to ask the user for help or act autonomously.

A module is a tuple M = (7, X, Y, c,q(t)) where 7 : X — Y is
a policy function from input space X to output space Y, c: X —
[0, 1] is a confidence score, and g(t) is a time-dependent cost for
querying the human about the module. For instance, a module
could be a perception module that extracts geometric information
about the robot’s environment from RGB-D input, or a planning
module that extracts a robot trajectory given obstacle states in the
environment. We assume that one module in Gy (which we denote
M;) takes in the state s € S (i.e. X = S), and one module (which we
denote My) produces a final action a € A (i.e. Y = A), with other
modules having arbitrary input/output spaces.

Research problem. Our goal is to decide what and when to
query, which we decompose into (1) a module selector algorithm
¥ms which chooses a single module, and (2) a querying algorithm
/q that decides whether to query or to execute the autonomous
action a = P(s) € A. For a particular state s € S, the module
selector algorithm i/;,s and querying algorithm /4 should minimize
J(¥ms, ¥q), the weighted sum of the query cost Jquery (¢; Yims, ¥q)
and the task cost Jizsk (t; ¥ms, Vq), over the interaction horizon T:

T

J(Ums: l;//q) = % Z (WJquery +(1- W)Jtask)
t=1
T

Sl

wo Y M+ -w(a-r@)] (1)

t=1 M;eQ(t)

where w € [0, 1] determines the trade-off between minimizing
human workload and recovering from failures efficiently, Q(¢)
denotes the set of modules for which we query at time #, M; refers to
an individual module in this set, g; () is the query cost for module
i, and r(t) is the binary task reward, which is equal to 1 if the
execution succeeds, and 0 otherwise.

Human feedback. We assume that for every module M;, the
user can provide feedback f € Y; by choosing a possible output of
that module (e.g. classifying an object or selecting a high level skill).
When we receive this feedback, we replace the module output with
the expert feedback f, along with an expert confidence ¢ = cexpert-

Module redundancy. The overall task reward r(t) depends on
the success of individual modules. The modules can be structured
in two ways, depending on the robot system architecture:

e A redundant manner, where at least one module M; must succeed
for their combination to succeed, so success is a union. For
example, a policy architecture may include two redundant
modules that predict object material properties: an off-the-shelf
foundation model, and a domain-specific neural network [40].

e A non-redundant manner, where all modules M; must succeed
for their combination to succeed, so success is an intersection.
For example, a goal-reaching manipulation policy architecture
may require two modules to succeed: a goal inference module,
and a planning module that infers a trajectory to the goal [25].

The overall success r(t) depends on redundant and non-redundant

combinations of modules, based on the robot system architecture.

4 Module Selectors

The module selector algorithms ¢/, select which module to query
by considering the 1-timestep version of the overall objective (Eq.
1). While we cannot determine a priori whether each module M;
is in failure or success state, we have access to confidences c¢;. We
consider three proxy objectives to minimize:

Proxy objective 1 (product-of-confidences):

w M) 9i (1) + (1= w)(1 = [Tpear) €i) (2
Proxy objective 2 (sum-of-uncertainties):
w X Mea(r) 9i(H) + (1= w) Xprgaq (1 —ci) 3)

Proxy objective 3 (redundancy-dependent):

HRI "26, March 16-19, 2026, Edinburgh, Scotland, UK

w2 mea(r) 4i(8) + (1 - w)(1 - 7(Q(1)) ©

where reward estimate 7#(Q(t)) combines sums (redundant) and
products (non-redundant) of confidences for modules M; ¢ Q(t)
(see Appendix A for justifications for how each proxy objective
approximates Ji,qk)-

We consider four module selector algorithms—two direct proxy
optimization algorithms (Mixed-Integer Programming and
Brute-Force) and two graph-based algorithms (Binary Tree
Query and Graph Query). We also consider three baseline module
selectors, two of which do not consider query costs or confidence
scores, and one that only considers confidence scores. The baselines
are (1) Never Query which does not choose any module to query,
(2) Topo Query which simply selects the first module in the
topological ordering of the module graph G which has not been
previously selected, and (3) Confidence Query which selects the
module with the lowest confidence score.

4.1 Proxy Objective Optimization

We consider two module selectors that directly use the
redundancy-dependent proxy objective (Eq. 4). The Mixed-Integer
Programming (MIP) module selector directly minimizes this
objective using a mixed-integer solver (SCIP [4]). The Brute-Force
module selector evaluates this objective for querying each module
M; in the module graph Gy, and then selects the module M; that
achieves the minimal objective.

4.2 Binary Tree Query

This algorithm uses a binary tree graph to model the yes/no
decision of querying each module. The edge weights are defined
so that paths from the root to the leaves correspond to the
product-of-confidences proxy objective (Eq. 2). We then treat the
module optimization problem as a shortest-cost path problem,
running Dijkstra’s algorithm on the graph to obtain the module
M;.

The binary tree graph B = (V,E) (shown in Fig. 3 (left)) has
edges E corresponding to the actions of querying aquery or acting
autonomously a@auto for module M;, and vertices V that encode the
querying decisions of modules prior to module M; in the topological
ordering of the module graph Gy. The edge costs for query actions
are C(e) = q;(t), representing the query cost for module M;. The
edge costs for autonomous actions are chosen to create a telescoping
sum with the correct product of confidences. In particular, C(e) =
(1= ci) ITjepreo ¢j» where prev are prior autonomous modules on
the path from root to M;, and if prev is empty, C(e) = 1 —c;.

4.3 Graph Query

This algorithm constructs a directed graph representing the
modular policy and treats module selection as a shortest path
problem, running Dijkstra’s algorithm on the graph to select the
module M; (equivalent to optimizing the sum-of-uncertainties
objective, Eq. 3).

Given the topological ordering of modules in the module graph
G, the graph G = (V, E) is shown in Fig. 3 (middle), where vertices
V correspond to the state of each module, and edges E correspond
to actions, both query aquery and autonomous aayto. The vertices V
consist of an initial state sj,j; and pairs of success and failure states
for each module M; (sp; success ad S, failure)- The edge costs for
query actions are a scaled version of the query cost C(e) = €q;(t),
with scaling factor € > 0 (for module selectors). The edge costs for
autonomous actions are the module uncertainties C(e) = 1 — ¢;.

Rohan Banerjee et al.

5 Querying Algorithms

Querying algorithms decide whether to make a query or execute

the action a produced by the final action module My (Sec. 3). We

consider four querying algorithms and one baseline, illustrated in

Fig. 3 (right). They use the following primitives:

o FORWARDPASs: represents passing the current state s € S
and query set Q(t) through all of the modules in the module
graph Gy to yield the final action a and updated confidences.
In the manipulation setting, this could represent passing the
current perceptual state (e.g. RGB-D camera data) to the policy
architecture, producing the desired end-effector pose, along with
confidences for all modules in the policy architecture.

e EXECUTE: represents executing the action a and observing
overall boolean outcome. In the manipulation setting, this could
represent commanding the robot to the desired end-effector pose
and assessing whether the manipulation task was successful.
All querying algorithms call the module selector ¥/, to select a

candidate module to query, but differ in how many queries are made
prior to execution. The Execute-First algorithm initially executes
the autonomous action a from the FORWARDPAsS primitive. If a fails,
it alternates between calling the module selector ¢, and executing
until success. Query-then-Execute always alternates between
calling the module selector ¢/,,s and executing until success.

Algorithm 1 EXECUTE-FIRST and QUERY-THEN-EXECUTE.

1: if EXECUTE-FIRST then

2 a = FORWARDPAss(0)

3 outcome = EXECUTE(a)
4: else if QUERY-THEN-EXECUTE then
5: outcome = FALSE

6: end if

7: while outcome = FALSE do
8 Q1) = Yms (G)

9 a = FORWARDPAss(Q(t))
10: outcome = EXECUTE(a)
11: end while

Algorithm 2 QUERY-UNTIL-CONFIDENT and QUERY-UNTIL
-CONFIDENT-WORKLOAD-AWARE; QUERY-FOR-ALL baseline.

1: outcome = FALSE
2: while outcome = FALSE do
3: repeat

4 Q(t) = ¥ms (Gm)
5: if QUERY-UNTIL-CONFIDENT then
6: StopCondition = [F(Q(¢)) > 7]
7: else if QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE then
8: StopCondition = [cCexpert — ¢i < Aq; ()]
9: else if QUERY-FOR-ALL then

10: StopCondition = [Q(t) = 0]

11: end if

12: until StopCondition = TRUE

13: a = FORWARDPAss(Q(2))

14: outcome = EXECUTE(a)

15: end while

Query-until-Confident repeatedly calls s until
the proxy task reward estimate F(Q(t)) (Eq. 4) exceeds
a certain threshold 7, then executes the action a.
Query-until-Confident-Workload-Aware repeatedly calls
Yms until the confidence gain due to querying module M;,
Cexpert — Ci (Cexpert defined in Sec. 3), is less than the scaled cost of
querying Ag; (), for scaling factor A > 0 (for querying algorithms).

A Human-in-the-Loop Confidence-Aware Failure Recovery Framework for Modular Robot Policies

Left Edgeiiffﬁﬁ”’//’/

Binary Tree Query

Coea D

HRI ’26, March 16-19, 2026, Edinburgh, Scotland, UK

PYms pass Execute
Execute-First
F

w:u* orward Execute

|

Query-then-Execute

Query-until-Confident/
Query-until-Confident-Workload-Aware;
Query-For-All (Baseline)

1
! '

* Forward 1

Yms —~ Pass Execute :

1

'

'

1

1

'

i
]

]

|

'

1

1

!

|
"-____Stan
i '

i

! Pass
i

i

i

i

I

i

1

!

]

]

i

i

i

i

i

Graph Query

Figure 3: (left) BINARYTREEQUERY graph example for N=3, (middle) GRAPHQUERY graph example for N=3, (right) Querying
algorithms and QUERY-FOR-ALL baseline, which decide when to query (calling module selector i/;,,s) and when to execute
actions (calling FORwARDPASs to get action a, then calling EXECUTE). Querying algorithms include EXEcUuTE-FIRsT, which
executes once prior to starting to query, QUERY-THEN-EXECUTE, which alternates between querying and execution, and
QUERY-UNTIL-CONFIDENT/QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE, both of which repeatedly query until a stopping
condition is met. The QUERY-FOR-ALL baseline queries for all modules before execution.

Finally, the Query-For-All baseline repeatedly calls ¢/, until it
has queried for all modules, then executes the resultant action a.

6 Synthetic Simulation: Systematic Ablations

We develop a synthetic module simulation to investigate how
system and user variables affect module selector and querying
algorithm performance (Secs. 4, 5). Our simulation uses N modules
connected via a random module graph Gy, where modules are
implemented as logic gates (AND/OR) operating on Boolean inputs
(including a Boolean state s). Individual modules are set to be in
either a success or failure state: modules in success states output
their logic gate value, while modules in failure states always output
FALSE. See Appendix F.1 for hyperparameter details (including
proxy objective weighting and GraphQuery ¢).

Independent variables. We examine four variables covering
key system and user factors that affect robot and human-robot
interaction performance (full settings in Appendix F.1). We consider
three system variables:

e The number of modules N (Sec. 6.1). The number of modules
in a robot policy architecture can vary, ranging from simple
modular perception, planning, and control architectures, to more
complex modular architectures involving up to 100 modules.

o Module redundancy/graph structures G, (Sec. 6.2). Robot
policy architectures include both redundant and non-redundant
structures (Sec. 3). Different module selectors have different
redundancy assumptions based on their proxy objective. We
consider 4 redundancy structures with varied module types and
orderings: fully redundant (all-OR), fully dependent (all-AND),
fully redundant followed by fully dependent (OR-then-AND),
fully dependent followed by fully redundant (AND-then-OR).

o Confidence values c; (Sec. 6.3). Robot policy architectures can
have a diversity of confidence scores across the modules. We
assign either a high or a low confidence value to each module
in Gpr. We additionally treat a module’s confidence value as the
probability that the module is in a success state.

And we consider one user variable:

e Query costs g; (Sec. 6.4). The costs of querying for each module
in a policy architecture can vary, due to the diversity of feedback
types. We consider different values of uniform query costs g; for
all modules.

We vary each independent variable in isolation. When a variable
is not varied, we fix its value as follows: (1) N=10 modules,
(2) Fully dependent (all-AND) module structure, (3) 3 modules
with confidence 0.1 and all other modules with confidence 1,
(4) Uniform query cost of 0.32. We also assume no noise in the
expert (Cexpert=1.0). Additionally, we use a fixed querying algorithm
(QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE) when analyzing
module selectors, and a fixed module selector (GRAPHQUERY) when
analyzing querying algorithms.

Metrics. We evaluate the methods using 5 metrics (lower is better):

e Task Cost. 0 if the agent successfully recovered from the failure
after T timesteps, 1 otherwise. This represents whether the robot
could recover from the failure given its time horizon constraint.

¢ Query Cost. Zthl brqi(t), where T is the number of timesteps
needed to achieve success or the maximum time horizon (which
is proportional to the number of modules N), and b; is a binary
indicator variable for whether the robot queried at timestep ¢.

This represents the total user workload used to recover from the

robot’s failure.

e Number of Failed Attempts. Zthl gi, where g; is a binary
indicator variable for whether a failed execution occurred at
timestep t. This represents the number of failed robot executions
encountered before the robot recovered from the failure.

e Computation Time. Zthl (Time(t)), where Time(t) is the
total runtime between successive EXECUTE statements. This
represents the total computation time used by the robot to run
the module selector and the querying algorithm at each timestep
(not including the time required to query).

o Total Timesteps T. This includes both the number of queries
and the number of failed executions encountered before the robot
recovered from the failure.

Fig. 4(a) compares the algorithm performance for each variable,
highlighting one metric? (full results detailed in Appendix F).
We additionally highlight results in Appendix F.6 for varying
an additional user variable, the expert confidence level cexpert
(introduced in Sec. 3), where we find that the BRuTEFORCE and
GrAPHQUERY module selectors and both QUERY-UNTIL-CONFIDENT

2Because the computation time of the GRAPHQUERY exceeded 1 second for graph sizes
N > 50, we omit the computation time for this module selector. Additionally, we omit
reporting MIP results for all graph sizes because its computation time also exceeds
this threshold.

HRI "26, March 16-19, 2026, Edinburgh, Scotland, UK

Never Query Brute Force Graph Query

g

° < »> “ 10}

Task Cost

Vs
>

000 ’_._‘.4,—4

Total Timesteps

F————— —9 02

Computation Time (s)

Binary Tree Query

-

—— Confidence Query

Rohan Banerjee et al.

+— Topo Query ()
Low Variance (8 = 0.4)

TN

¥ . > “ + »

Total Timesteps
Task Cost

—_——————

allAND all'oR

0 25 50 75 100

Execute-First Query-Then-Execute

of o8

B Query-Until-Confident

A

steps

£ oo S

e

Task Cost

7

Total Tim¢

ANDfenOR ORthen-AND (1.0,0.1) (0.9,0.2) (0.8/0.3) (0.7,0.4) 0.08 016 032 0.64

4 Query-Until-Confident-Workload-Aware

A

o
(0.8,0.3)(0.75, 0.35) (0.7, 0.4) (0.65, 0.45) (0.6, 0.5)

—&— Query-For-All

o High Variance (8 = 0.6)
A 16—

" @ 4 08 //‘\o\

Total Timestep:
Task Cost

001 A L e Sl 4 o ® - 04
et & L
5 10 15 18 25 all- AND alloR ANDthenOR ORthenAND (1,0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4) 0.08 0.16 0.32 0.64 2 08,031 (075,0.35) 0.7, 0.4) (0:65,045) (06, 0.5)
Number of Modules Redundancy Confidences Query Costs Confidences

Figure 4: (a) Systematic ablation experiments, showing the 4 independent variables in our simulations: (1) number of modules, (2)
graph redundancies, (3) confidences, (4) query costs, with median values across 100 trials (mean for Task Cost)?. We find that the
BRUTEFORCE and GRAPHQUERY module selectors (along with the CONFIDENCEQUERY baseline) are the most robust to varying
redundancy, confidences, and query costs, with BRUTEFORCE and CONFIDENCEQUERY being the most scalable. Additionally,
we find that the QUERY-UNTIL-CONFIDENT and QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE querying algorithms are the
most robust across redundancy and query costs, with QUERY-UNTIL-CONFIDENT having the best scalability and robustness to
confidences; (b) Module heterogeneity experiments. We find that GRAPHQUERY outperforms CONFIDENCEQUERY, particularly
when module confidences overlap and workload variance f is high. Detailed results in Appendix F.

querying algorithms perform best in high expert confidence
regimes, with performance degrading as the confidence decreases.

6.1 Varying number of modules N

Module selectors. We find that all metrics except for Computation
Time are invariant to N, for all module selectors except
NEVERQUERY and ToroQUERY. CONFIDENCEQUERY is the most
scalable module selector with linear time complexity in N (Fig.
4(a)), making it the most computationally efficient for large policy
architectures. Since Computation Time scales with T, methods that
require many timesteps (i.e. NEVERQUERY and TOPOQUERY) incur
higher computation time.

Querying algorithms. We find that all metrics except
Computation Time are invariant to N, for all querying
algorithms except QUERY-FOrR-ALL, with Task Cost and
Query Cost of 0 and 0.96, respectively. We note that
QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE has the highest
Computation Time (Fig. 4(a)), due to the additional step to
predict the cost of querying, while the other three querying
algorithms have nearly-identical values for Computation Time.
For large robot policy architectures, we recommend not selecting
QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE if runtime is crucial.

6.2 Varying graph structure Gy

Module selectors. We find that all metrics are lower for the all-OR
structure across module selectors (except Query Cost, which is
invariant to the structure). For this redundant structure, there
is little benefit to ask for help to recover from failures, leading
NEVERQUERY and ToPOQUERY to perform well in Total Failed
Attempts and Total Timesteps. Module selector rankings (Fig. 4(a))
remain invariant for the other redundancy structures. We find that
GRAPHQUERY is competitive with the other module selectors, even
when its proxy objective does not match the redundancy structure.

Querying algorithms. We find that all metrics are lower for
the all-OR structure across querying algorithms. In general, both
QUERY-UNTIL-CONFIDENT variants have the lowest Total Failed
Attempts, except in the all-OR setting (where EXECUTE-FIRST
and QUERY-THEN-EXECUTE outperform them). Thus, if the robot

policy architecture is not fully redundant, we recommend either
QUERY-UNTIL-CONFIDENT variant to maximize recovery efficiency.

6.3 Varying confidence values c;

Module selectors. We find that all metrics (e.g. Task Cost, Fig. 4(a))
are higher across module selectors when confidences overlap. As
BRUTEFORCE, GRAPHQUERY, and CONFIDENCEQUERY are the most
competitive module selectors regardless of confidence level, we
recommend any of these module selectors.

Querying algorithms. We find that all metrics (e.g. Task Cost,
Fig. 4(a)) are higher across querying algorithms when confidences
overlap, except for QUERY-UNTIL-CONFIDENT and QUERY-FOR-ALL.
We find that the QUERY-UNTIL-CONFIDENT querying algorithm
is the most robust to confidence variations. We recommend any
querying algorithm if the confidence scores are well-separated
in the robot policy architecture, and QUERY-UNTIL-CONFIDENT if
confidence values are overlapping.

6.4 Varying query costs g;

Module selectors. We find that all metrics except Task Cost
are invariant to g¢;, with BRUTEFORCE, GRAPHQUERY, and
CoNFIDENCEQUERY having lower Total Timesteps (Fig. 4(a))
compared to the other module selectors. Regardless of the level of
user querying workload, we recommend either of these module
selectors.

Querying algorithms. We find that besides Query Cost, all
metrics are largely invariant to ¢; across querying algorithms.
As both QUERY-UNTIL-CONFIDENT variants have the lowest Total
Failed Attempts and generally lower Total Timesteps (Fig. 4(a)), we
recommend either of these variants.

7 Synthetic Simulation: Module Heterogeneity

We now consider a simulation setting with an additional user
variable, query cost variance f, allowing the query costs g; to
vary across modules. This models more realistic cost variation
across feedback types. We sample each ¢; uniformly around
a nominal value Q, ie., gij~Uniform[(1-5)Q, (1+p)Q], with
(0=0.32 (the query cost value used when not varied in Sec. 6).
We compare the best performing module selectors from Sec. 6

A Human-in-the-Loop Confidence-Aware Failure Recovery Framework for Modular Robot Policies

based on Task Cost: the query cost-aware method GRAPHQUERY,
and the confidence-only baseline CONFIDENCEQUERY (with
the QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE querying
algorithm).

We find that GRrRaPHQUERY consistently outperforms
CoNFIDENCEQUERY in the Total Timesteps and Task Cost metrics,
especially when module confidences overlap or workload variance
is high (Task Cost in Fig. 4(b)). Under these conditions, upstream
modules with lower confidence and high workload may succeed,
whereas downstream modules with higher confidence but low
workload may fail. CONFIDENCEQUERY incorrectly selects these
upstream modules first, whereas GRAPHQUERY correctly selects
the downstream module (full results in Appendix G).

8 Robot-Assisted Bite Acquisition Experiments

Our real robot experiments use a robot-assisted bite acquisition
architecture with N = 4 modules: food type identification (GPT-4o0),
bounding box selection (GroundingDINO), skill selection (GPT-40),
and skill parameter selection (RT-1). The first three modules
are VLMs, while the skill selection module is a VLA. Food type
identification and skill selection support learning from feedback
via retrieval-augmented generation (RAG) (architecture and RAG
details in Appendix C). We develop calibrated confidence scores for
each module using a population-based interval procedure (detailed
in Appendix C.1-C.2). We estimate module query costs using a
predictive workload model from prior work [3] (Appendix E).

To select a module selector and query algorithm for bite
acquisition, we adopt the recommendation from the closest
synthetic setting as follows. We use the N=10 setting to
approximate system scale; we model bite acquisition as
non-redundant (all-AND), since all modules must be correct
for success (Sec. 3); we use the confidence value setting (1,0.1)
to match our binary calibrated module confidence scores
(Appendix C.2); we select ¢;=0.32 to match the empirical
mean of workload model predictions; we assume Cexpert=1.0
as expert feedback is available for all modules. Based on these
conditions (Sec. 6), along with the query cost variance experiments
(Sec. 7), we use the GRAPHQUERY module selector with the
QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE querying algorithm,
which performed best in Total Timesteps and Task Cost.>

User Studies. We conducted three IRB-approved studies to
evaluate algorithm task success and querying workload: two
in-lab studies, and one in-home study involving two individuals
with severe mobility limitations. All studies use a Kinova Gen3
6-DoF arm with a Robotiq 2F-85 gripper, and we replicate a
custom-designed feeding tool for the user studies [18]. A key
methodological feature of both of our in-lab studies, which supports
ecological validity, is the emulation of mobility constraints in
participants without pre-existing mobility impairments using
occupational therapy resistance bands [24] (Fig. 5 (left)).

For each method, the robot acquires 5 food items from a
plate, with a maximum of 3 acquisition attempts per item to
maintain a reasonable study duration. The robot may ask 4 types
of queries, corresponding to each module in the bite acquisition
system (Appendix C.4). The method and plate sequences are both
counterbalanced across the users in each study (Fig. 5 (middle, top)).

Metrics. We report 4 subjective metrics (Mental/Physical
Demand, Effort, Subjective Success, Satisfaction) and 3 objective

3While GrapHQUERY and BRUTEFORCE were equally competitive, BRUTEFORCE
produced false-positive queries with our binary confidence scores. We chose
QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE over QUERY-UNTIL-CONFIDENT for
better generalization to time-varying workload.

HRI ’26, March 16-19, 2026, Edinburgh, Scotland, UK

metrics (Mean Queries/Executions/Successful Bites Per Plate),
detailed in Appendix H.

8.1 In-lab real-robot user study

We first conducted an in-lab study with 10 participants
without mobility limitations (7 male, 3 female; ages 19-33;
40% with prior robot experience) (Fig. 5 (right)). We
compared our method (GRAPHQUERY module selector and
QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE querying algorithm)
against two additional baselines: Never Query (NEVERQUERY module
selector and QUERY-THEN-EXECUTE querying algorithm) and
Always Query (ToPoQUERY module selector and QUERY-FOR-ALL
querying algorithm). The study evaluated whether our method (1)
improved task success over Never Query and (2) reduced querying
workload over Always Query. Participants interacted with two
plates: a "savory salad” (chicken, lettuce, cherry tomatoes) and a
"Thanksgiving meal" (chicken, green beans, mashed potatoes).

As shown in Fig. 6(a—b), our method achieved the highest user
satisfaction, significantly lower mental/physical workload than
Always Query, and higher subjective success than Never Query
(Wilcoxon signed-rank test, @ = 0.05). Our method is more efficient
than Always Query, with higher task success than Never Query.

8.2 In-lab real-robot user study with module
heterogeneity

To distinguish our method from CONFIDENCEQUERY, we introduced
module heterogeneity into our bite acquisition setting by
incorporating a faulty food detector M; (Appendix D), similar
to our second simulation study (Sec. 7). We conducted a second
in-lab study with 10 additional participants (3 male, 6 female, 1
non-binary; ages 20-30; 30% with prior robot experience) using
the "savory salad" plate (Fig. 5 (right)). We sought to determine
whether our method improved task success and querying workload
compared to the Confidence Query baseline (CONFIDENCEQUERY
module selector and QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE
querying algorithm).

We found that our method produced significantly higher
task performance, lower workload, and higher satisfaction than
Confidence Query (Wilcoxon test, @ = 0.05; Fig. 5(c-d)), reinforcing
the value of principled uncertainty and workload integration.

8.3 In-home real-robot user study

We conducted an in-home user study on 2 individuals with mobility
limitations who require feeding assistance (Fig. 5 (middle, bottom)).
One is a female, 48 years old, who has had Multiple Sclerosis for 17
years, and the other is a male, 47 years old, who has been paralyzed
with a C4-C6 spinal cord injury for 27 years. Based on the in-lab
study results (Secs. 8.1, 8.2), we compared our method to NeverQuery
and AlwaysQuery. We evaluated the methods on a "mixed salad"
plate with additional food item diversity (watermelons, cantaloupes,
honeydew, green beans).

We find that the mental/physical demand and effort of our
method are lower compared to Always Query, and that users rated
our method as more successful compared to Never Query (Fig. 6(e-f)).
In general, our method achieves the best user satisfaction score.

Both users expressed that they liked the system, as their
satisfaction scores were higher for our method compared to both
baselines. One user’s absolute satisfaction level was reduced due to
the need for physical interaction with the interface. They noted that
a more accessible option, such as voice control, would significantly
improve their experience. They commented that because they use
a tablet interface in everyday interactions, answering a few more

HRI "26, March 16-19, 2026, Edinburgh, Scotland, UK

Meal Plates Used In Studies

Experimental Setup

%
= o,
Uy
— &
Intel — ", \
RealSense
D435

Robotiq

Robe In Home Studies - Individuals With

Mobility Limitations

Metal
Fork

—)

User Interface N
On Tablet " 4

Resistance
Bands And
Anchor Points

A Meal Plate

Rohan Banerjee et al.

Figure 5: Experimental setup. (left) Robot and user study setup; (middle, top) Meal plates used in user studies, including
"Thanksgiving meal", "savory salad", and "mixed salad"; (middle, bottom) Users with mobility limitations from in-home user
study; (right) Users with emulated mobility limitations from two in-lab user studies.

Ours
In-lab Real-robot In-lab Real-robot User Study In-home Real-robot Aways Query

(a) User Study Results (c) with Module Heterogeneity Results (e) User Study Results Never Query
@ A ” = Confidence Query
g * * % £ g
g : 3 :
A 5 I A A S
84 — * Z I I 8 4 I I I
3 3 5 -
o I 3 AN l l
5 R 2
S - kS g - -
£ g g
@ Mental/Physical Effort Subjective Satisfaction «» Mental/Physical ~ Effort Subjective Satisfaction @ Mental/Physical ~ Effort Subjective Satisfaction

Demand Success Demand Success Demand Success

(b) (d) ®
P P * P
£ £ £
3 5 3§ 3 9
£ 4 - i 3 4 -
3 9 * = Z ! ;E’ K
= =
s 2 it [« s) Z 1 I
2z I Z 2 R -
= =0 = " X
Sl Mean Queries ~ Mean Executions Mean Successful o Mean Queries Mean Executions ~ Mean Successful O Mean Queries Mean Executions ~ Mean Successful

Per Bite Per Bite Bites Per Trial

Per Bite

Per Bite

Bites Per Trial Per Bite Per Bite Bites Per Trial

Figure 6: User study metrics. In-lab real-robot study: (a) subjective scores, (b) objective scores; In-lab real-robot study with
module heterogeneity: (c) subjective scores, (d) objective scores; In-home real-robot study: (e) subjective scores, (f) objective

scores (x indicates statistical significance p < 0.05.).

queries on the tablet in the study did not require significantly extra
effort for the study duration. However, they still rated AlwaysQuery
as having higher effort than our method. The other user mentioned
that the time required for the robot to execute actions (higher
when the robot failed more frequently) was an additional source of
frustration that increased overall workload.

9 Discussion

Our framework readily extends to other modular robot systems,
which we illustrate by considering two additional domains: a
feeding architecture with visuo-haptic perceptual redundancy [40],
and a large multi-robot swarm system [34]. The feeding system
maps naturally to an OR-then-AND redundancy structure (due
to the perceptual redundancy) with low query cost (¢; = 0.16),
yielding the same recommendation as our primary setting (Fig. 4).
We can model the swarm domain with N = 100 to capture its scale
and an OR redundancy structure, leading to the CONFIDENCEQUERY
module selector for its superior scalability (Fig. 4, first column), and
either QUERY-UNTIL-CONFIDENT querying algorithm variant. Both
resulting recommendations align with domain intuition.

A key challenge in applying our framework to bite acquisition
was developing well-calibrated confidence scores for each module.
This involved adapting RT-1 to produce novel confidence
scores, and developing a common calibration procedure for
all modules that could operate under their varying empirical
confidence distributions (Appendix C.1-C.2). While our confidence
estimates were reasonably calibrated, future work could explore
conformal prediction [27, 33] or data-driven calibration methods
[20]. Future work could also consider module selectors that
handle more complex redundancy structures. While we studied
graph-based module selectors for product-of-confidences and
sum-of-uncertainties objectives, a hybrid selector could adaptively
combine these structures based on which modules are redundant.
Finally, longer-term interactions with end users may further
differentiate human-in-the-loop algorithms, beyond our observed
satisfaction trends. Future evaluations could also consider more
diverse in-the-wild dishes with richer food sets, more complex
geometries, and pre-manipulation skills [15, 18, 40].

A Human-in-the-Loop Confidence-Aware Failure Recovery Framework for Modular Robot Policies

References
[1] Christopher Agia, Rohan Sinha, Jingyun Yang, Ziang Cao, Rika Antonova, Marco

[2

[10

[11

[12

(13

[14

[15

[16

[17

[19

[20

—

]

]

]

Pavone, and Jeannette Bohg. 2025. Unpacking Failure Modes of Generative
Policies: Runtime Monitoring of Consistency and Progress. In Conference on
Robot Learning. PMLR, 689-723.

Faseeh Ahmad, Matthias Mayr, Sulthan Suresh-Fazeela, and Volker Krueger.
2024. Adaptable Recovery Behaviors in Robotics: A Behavior Trees and
Motion Generators (BTMG) Approach for Failure Management. arXiv preprint
arXiv:2404.06129 (2024).

Rohan Banerjee, Rajat Kumar Jenamani, Sidharth Vasudev, Amal Nanavati,
Sarah Dean, and Tapomayukh Bhattacharjee. 2024. To Ask or Not To Ask:
Human-in-the-loop Contextual Bandits with Applications in Robot-Assisted
Feeding. arXiv preprint arXiv:2405.06908 (2024).

Suresh Bolusani, Mathieu Besangon, Ksenia Bestuzheva, Antonia Chmiela, Jodo
Dionisio, Tim Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed
Ghannam, Ambros Gleixner, et al. 2024. The SCIP optimization suite 9.0. arXiv
preprint arXiv:2402.17702 (2024).

Maya Cakmak and Andrea L Thomaz. 2012. Designing robot learners that ask
good questions. In Proceedings of the seventh annual ACM/IEEE international
conference on Human-Robot Interaction. 17-24.

Michele Colledanchise and Petter Ogren. 2018. Behavior trees in robotics and Al:
An introduction. CRC Press.

Cristina Cornelio and Mohammed Diab. 2024. Recover: A Neuro-Symbolic
Framework for Failure Detection and Recovery. arXiv preprint arXiv:2404.00756
(2024).

Jiafei Duan, Wilbert Pumacay, Nishanth Kumar, Yi Ru Wang, Shulin Tian, Wentao
Yuan, Ranjay Krishna, Dieter Fox, Ajay Mandlekar, and Yijie Guo. 2024. Aha:
A vision-language-model for detecting and reasoning over failures in robotic
manipulation. arXiv preprint arXiv:2410.00371 (2024).

Ryan Feng, Youngsun Kim, Gilwoo Lee, Ethan Gordon, Matthew Schmittle,
Shivaum Kumar, Tapomayukh Bhattacharjee, and Siddhartha Srinivasa. 2019.
Robot-Assisted Feeding: Generalizing Skewering Strategies across Food Items on
a Realistic Plate. (06 2019). doi:10.48550/arXiv.1906.02350

Tesca Fitzgerald, Pallavi Koppol, Patrick Callaghan, Russell Quinlan Jun Hei
Wong, Reid Simmons, Oliver Kroemer, and Henny Admoni. 2022. INQUIRE:
INteractive querying for user-aware informative REasoning. In 6th Annual
Conference on Robot Learning.

Lex Fridman, Bryan Reimer, Bruce Mehler, and William T Freeman. 2018.
Cognitive load estimation in the wild. In Proceedings of the 2018 chi conference on
human factors in computing systems. 1-9.

Emiland Garrabé, Pierre Teixeira, Mahdi Khoramshahi, and Stéphane Doncieux.
2024. Enhancing Robustness in Language-Driven Robotics: A Modular Approach
to Failure Reduction. arXiv preprint arXiv:2411.05474 (2024).

Ethan K Gordon, Xiang Meng, Tapomayukh Bhattacharjee, Matt Barnes, and
Siddhartha S Srinivasa. 2020. Adaptive robot-assisted feeding: An online
learning framework for acquiring previously unseen food items. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,
9659-9666.

Ethan K Gordon, Sumegh Roychowdhury, Tapomayukh Bhattacharjee, Kevin
Jamieson, and Siddhartha S Srinivasa. 2021. Leveraging post hoc context for
faster learning in bandit settings with applications in robot-assisted feeding.
In 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
10528-10535.

Nayoung Ha, Ruolin Ye, Ziang Liu, Shubhangi Sinha, and Tapomayukh
Bhattacharjee. 2024. REPeat: A Real2Sim2Real Approach for Pre-acquisition
of Soft Food Items in Robot-assisted Feeding. In 2024 IEEE/RSY International
Conference on Intelligent Robots and Systems (IROS). IEEE, 7048-7055.

Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX
(Task Load Index): Results of empirical and theoretical research. In Advances in
psychology. Vol. 52. Elsevier, 139-183.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh,
Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. 2024.
Gpt-4o system card. arXiv preprint arXiv:2410.21276 (2024).

Rajat Kumar Jenamani, Priya Sundaresan, Maram Sakr, Tapomayukh
Bhattacharjee, and Dorsa Sadigh. 2024. FLAIR: Feeding via Long-horizon
Acqulsition of Realistic dishes. arXiv preprint arXiv:2407.07561 (2024).

Ulas Berk Karli, Tetsu Kurumisawa, and Tesca Fitzgerald. [n.d.]. Ask Before
You Act: Token-Level Uncertainty for Intervention in Vision-Language-Action
Models. In Second Workshop on Out-of-Distribution Generalization in Robotics at
RSS 2025.

Ulas Berk Karli, Ziyao Shangguan, and Tesca Fltzgerald. 2025. INSIGHT:
INference-time Sequence Introspection for Generating Help Triggers in
Vision-Language-Action Models. arXiv preprint arXiv:2510.01389 (2025).

[21]

[22

(23]

[24]

[25]

[26

[27

[28

[29

[30

[31

[32

(33]

[34

[35

[36

[37

[38

[39

=
=

[41]

HRI ’26, March 16-19, 2026, Edinburgh, Scotland, UK

Ross A Knepper, Stefanie Tellex, Adrian Li, Nicholas Roy, and Daniela Rus. 2015.
Recovering from failure by asking for help. Autonomous Robots 39 (2015), 347-362.

Ali Larian, Atharv Belsare, Zifan Wu, and Daniel S Brown. 2025. Learner and
Teacher Perspectives on Learning Rewards from Multiple Types of Human
Feedback. RSS 2025 Workshop Human-in-the-Loop Robot Learning: Teaching,
Correcting, and Adapting (2025).

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan
Li, Jianwei Yang, Hang Su, Jun Zhu, and Lei Zhang. 2023. Grounding DINO:

Marrying DINO with Grounded Pre-Training for Open-Set Object Detection.
arXiv preprint arXiv:2303.05499 (2023).

Ziang Liu, Yuanchen Ju, Yu Da, Tom Silver, Pranav N Thakkar, Jenna Li, Justin
Guo, Katherine Dimitropoulou, and Tapomayukh Bhattacharjee. 2025. GRACE:
Generalizing Robot-Assisted Caregiving with User Functionality Embeddings. In
2025 20th ACM/IEEE International Conference on Human-Robot Interaction (HRI).
IEEE, 686-695.

Xiao Ma, Sumit Patidar, Iain Haughton, and Stephen James. 2024. Hierarchical
Diffusion Policy for Kinematics-Aware Multi-Task Robotic Manipulation. CVPR
(2024).

Matthias Mayr, Faseeh Ahmad, Konstantinos Chatzilygeroudis, Luigi Nardi, and
Volker Krueger. 2022. Skill-based multi-objective reinforcement learning of
industrial robot tasks with planning and knowledge integration. In 2022 IEEE
International Conference on Robotics and Biomimetics (ROBIO). IEEE, 1995-2002.
James F Mullen Jr and Dinesh Manocha. 2024. Towards Robots That Know
When They Need Help: Affordance-Based Uncertainty for Large Language Model
Planners. arXiv preprint arXiv:2403.13198 (2024).

Krishna Palempalli, Rohan Banerjee, Sarah Dean, and Tapomayukh Bhattacharjee.
2025. Human-in-the-loop Foundation Model Failure Recovery for Robot-Assisted
Bite Acquisition. In 1st Workshop on Safely Leveraging Vision-Language Foundation
Models in Robotics: Challenges and Opportunities. https://openreview.net/forum?
id=17UG7eC11i

Tianyang Pan, Andrew M Wells, Rahul Shome, and Lydia E Kavraki. 2022.
Failure is an option: task and motion planning with failing executions. In 2022
International Conference on Robotics and Automation (ICRA). IEEE, 1947-1953.
Rafael Papallas and Mehmet R Dogar. 2022. To ask for help or not to
ask: A predictive approach to human-in-the-loop motion planning for robot
manipulation tasks. In 2022 IEEE/RS] International Conference on Intelligent Robots
and Systems (IROS). IEEE, 649-656.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models
From Natural Language Supervision. arXiv:2103.00020 [cs.CV] https://arxiv.org/
abs/2103.00020

Akilesh Rajavenkatanarayanan, Harish Ram Nambiappan, Maria Kyrarini, and
Fillia Makedon. 2020. Towards a real-time cognitive load assessment system for
industrial human-robot cooperation. In 2020 29th IEEE International Conference
on Robot and Human Interactive Communication (RO-MAN). IEEE, 698-705.
Allen Z Ren, Anushri Dixit, Alexandra Bodrova, Sumeet Singh, Stephen Tu, Noah
Brown, Peng Xu, Leila Takayama, Fei Xia, Jake Varley, et al. 2023. Robots that
ask for help: Uncertainty alignment for large language model planners. arXiv
preprint arXiv:2307.01928 (2023).

Michael Rubenstein, Alejandro Cornejo,
Programmable self-assembly in a thousand-robot swarm.
6198 (2014), 795-799.

Lucy Xiaoyang Shi, Zheyuan Hu, Tony Z Zhao, Archit Sharma, Karl Pertsch,
Jianlan Luo, Sergey Levine, and Chelsea Finn. 2024. Yell at your robot: Improving
on-the-fly from language corrections. arXiv preprint arXiv:2403.12910 (2024).
Joshua Bhagat Smith, Prakash Baskaran, and Julie A Adams. 2022. Decomposed
physical workload estimation for human-robot teams. In 2022 IEEE 3rd
International Conference on Human-Machine Systems (ICHMS). IEEE, 1-6.

Priya Sundaresan, Suneel Belkhale, and Dorsa Sadigh. 2022. Learning visuo-haptic
skewering strategies for robot-assisted feeding. In 6th Annual Conference on Robot
Learning.

Stefanie Tellex, Ross Knepper, Adrian Li, Daniela Rus, and Nicholas Roy. 2014.
Asking for help using inverse semantics. (2014).

Shivam Vats, Michelle Zhao, Patrick Callaghan, Mingxi Jia, Maxim Likhachev,
Oliver Kroemer, and George Konidaris. 2025. Optimal Interactive Learning on
the Job via Facility Location Planning. arXiv preprint arXiv:2505.00490 (2025).
Zhanxin Wu, Bo Ai, Tom Silver, and Tapomayukh Bhattacharjee. 2025. SAVOR:
Skill Affordance Learning from Visuo-Haptic Perception for Robot-Assisted Bite
Acquisition. arXiv preprint arXiv:2506.02353 (2025).

Chen Xu, Tony Khuong Nguyen, Emma Dixon, Christopher Rodriguez, Patrick
Miller, Robert Lee, Paarth Shah, Rares Ambrus, Haruki Nishimura, and Masha
Itkina. 2025. Can we detect failures without failure data? uncertainty-aware
runtime failure detection for imitation learning policies. arXiv preprint
arXiv:2503.08558 (2025).

and Radhika Nagpal. 2014.
Science 345,

https://doi.org/10.48550/arXiv.1906.02350
https://openreview.net/forum?id=I7UG7eC11i
https://openreview.net/forum?id=I7UG7eC11i
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020

HRI "26, March 16-19, 2026, Edinburgh, Scotland, UK

A Proxy Objectives
Justification for proxy objective 1: the second term can be a

reasonable approximation for 1 — E[r,g], where the expectation
is over model uncertainties (represented by c;):

E[rask] = P(N;M; succeeds)

= P(M; correct|predecessor M; correct)
M;
-] -
MeM,
Justification for proxy objective 2: Let u; = 1 — ¢; be the

uncertainty of module i. Then we can use union bound to show
that:

P(system fail) = P(U;M; fails)
< > P(M; fails)
i

TR

M[$Mq MiEMq

- S
MMy
Thus, the proxy objective 2 task component is an upper bound

in P(system fail) = 1 — E[r,5¢], meaning that proxy objective 2 is
a loose upper bound on the original objective, so minimizing proxy
objective 2, could also minimize the original objective.

B Algorithm Performance Analysis

Suppose that we have a module graph Gp; where we have exactly
one module in failure (denoted M), with all other modules in
success. Additionally, we assume that the cost of querying ¢; = 0.1
for all modules. The module in failure has confidence crF=01, and
all other modules have confidence ¢; = 0.1.

B.1 GraphQuery

Recall that in GRAPHQUERY, we assign edge costs C(e) = 1 —¢;
for the autonomous edges. The graph algorithm thus queries for a
module if 1 — ¢; > eg; or:

q<(l-c)fe ®)

We will never query for any of the modules in success because
c; = 1 for these modules (as 1 — ¢; will always be 0, and we assume
that g is nonnegative, so condition 5 can never be met), so we don’t
have to worry about querying for modules that are upstream of
Mg

In our scenario, we will query for My since ¢ = 0.1; and (1 -
cj)/e = (1—0.1) = 0.9; thus condition 5 is met. Thus, GRAPHQUERY
will query correctly at the first timestep.

For fixed ¢ = 0.1, the critical value of € above which we would
cease to query is ecrir = (1 —¢i)/(g) = (1 —0.1)/(0.1) = E

For fixed € = 1, the critical value of q above which we would

cease to query is gcrir = (1 —¢;)/(€) =

B.2 MIP

Recall that we approximate the expected task reward E[ry,q.] as
follows:

Rohan Banerjee et al.

Elriask] = 1_[P(M; correct) = 1_[ci
M; M;
If we decide to query for a particular module i, we assume that
c; = 1 since we’re using the expert feedback.
e Hypothetical J({ms, ¥q) of not querying for any module:
1-(1N-1.0.1)=0.9
e Hypothetical J(¢ims,¥q) of querying for any of the
non-failure modules: g+1—(1N72.0.1-1) = g+0.9 = g+0.9
o Hypothetical cost of querying for the failure module: g +1 —
(N"1)=gq
Thus, we should choose to query for the failure module as long
as g < 0.9, so in our scenario, MIP will always choose to query for
the module in failure at the first timestep.

C Bite Acquisition Architecture

Fig. 2 (left) shows the modular bite acquisition architecture that
we use in our work, which is an adaptation of a state-of-the-art
architecture [18], including novel foundation model components.

This autonomous system consists of four submodules, each with
an associated confidence estimate:

e M;p: GPT-40 [17] food type detector that processes a whole
plate RGB image zrgp € RF*W>3 and identifies a candidate
set of food labels £ = {I1, 1y, ..., I}, where K is the number
of unique food categories detected (e.g., cherry tomatoes,
pineapple, etc.). From this set, M; selects the single label
with the highest confidence score as its output:

M (zrgp) — I"

e M;: GroundingDINO [23] bounding box detector that takes
as input the selected food type label I* from M; together with
the plate RGB image zrgg. It outputs one or more bounding
boxes B(I*) = {b1,bs,..., by}, where each b; corresponds
to a detected instance of the food type [* in the image. Thus,

Ma(zgg.1*) — B(I).

e Ms: GPT-40 [17] skill selector that, given a detected food
label I* and its corresponding bounding box b;, predicts
the optimal skill a? € Ap, where Ay, is a set of skills (e.g.
Skewering, Scooping, Twirling).

Ms(I*,by) — al
e My: A VLA model RT-1 that refines the skill action alh into
precise skill parameters aé € R*. Tt takes in the skill action

a;’ and the cropped image from the corresponding bounding
box b;. We adapt RT-1 for modular control by fine-tuning
it with a new regression projection head on an aggregated
dataset consisting of SPANet samples [9], along with ~1,000
additional labeled images that we collected. This design
enables us to attribute RT-1’s uncertainty purely to its
skill-parameter prediction, while M;, My, and M3 handle
food classification, location estimation, and skill selection.

Skill-specific parameterization. We represent all

low-level skills using a unified 2D action vector

aﬁ = (x1,Y1,x2,y2), with its semantics based on the

selected skill a?. For skewering and twirling, the interaction

A Human-in-the-Loop Confidence-Aware Failure Recovery Framework for Modular Robot Policies

point is defined as the midpoint between the two predicted
points,
(o) = (R, Ut
2 2
and the fork tine direction 8 computed as follows:
0 = arctan(yz — y1, X2 — x1).

For scooping, (x1,y1) denotes the start of the scooping
motion and (x2,y2) denotes the end of the scooping
trajectory. This parameterization follows prior work
on vision-conditioned manipulation primitives (e.g.,
FLAIR [18]), while enabling a unified continuous action
space across heterogeneous skills.

My(a?,b;) — d!

C.1 Calibration Datasets and Confidence
Intervals

To support uncertainty-aware decision-making in our
bite-acquisition pipeline, we adapt the work mentioned in
[28]. We construct calibration datasets and associated confidence
intervals for all modules: My, My, M3, My. Each calibration dataset
records per-instance model outputs, their confidence scores, and
the corresponding ground-truth labels.

Calibration for M;. We use dishes and all the available plate
images from [18]. For each food type in an image, M; generates
a ranked list of candidate tokens (labels) with log probabilities.
These are exponentiated, scaled to percentages, and rounded to two
decimal places to yield confidence scores, and the top token (token
with the highest confidence score) is selected as the predicted label
for that food type.

o If the top token matches the ground-truth label for the
food type, we add an entry containing the top-5 tokens,
their confidence scores, and the ground-truth label to M;’s
calibration dataset.

o If the ground-truth label is not among the predictions, we
substitute a label: either an unmatched food type prediction
(if available) or, as a fallback, a matched one from the same
image. The substituted token and its associated scores are
stored alongside the ground-truth label.

This substitution procedure ensures that every target food
type contributes an entry to the calibration dataset, which is
necessary for computing reasonable reference intervals. This yields
a confidence-based calibration dataset for M; with 96 samples.

Calibration for M,. For the same set of images used in M;, we
iterate over all bounding boxes generated by M. Each bounding
box is manually assessed to determine whether it is successful
(accurately capturing a target food type) or unsuccessful (e.g.,
enclosing the wrong food type, empty regions, or background noise).
For each bounding box, we record the confidence score produced
by GroundingDINO. If the bounding box is deemed successful,
its confidence score is added to the success list; if unsuccessful, its
confidence score is added to the failure list. In this setup, the success
scores play the role of the “top-choice” confidence values, while
the failure scores serve as the counterpart to the “second-choice”
values used in M; and Ms. This yields a calibration dataset of
76 samples for My consisting of success (61 samples) and failure
(15 samples) confidence distributions that are used to construct
intervals analogous to those for the other modules.

Calibration for Ms. The identified (or substituted) label from
M, together with the corresponding bounding box image from M,

HRI ’26, March 16-19, 2026, Edinburgh, Scotland, UK

of that food type, is passed to Ms. To ensure reliable inputs, we
restrict this step to bounding boxes deemed valid—those accurately
capturing the food type without just empty regions and such. This
module outputs candidate skill tokens and their log probabilities,
which are processed into percentage confidence scores using the
same procedure as M. Similar to the procedure in Mj, the top token
is taken as the predicted skill. For each food type and bounding
box image pair, we store the top 3 tokens, their confidence scores,
and the ground-truth skill label in the calibration dataset for Ms.
This yields a confidence-based calibration dataset for M3, with 66
samples, analogous to that of M;.

Calibration for Mjy. Since RT-1 is deterministic, we introduce
stochasticity into its predictions using Monte Carlo Dropout.
Specifically, we enable dropout during inference and run the model
in batches of 16 forward passes. This produces a distribution over
the My output space, from which we compute the variance. The
variance then serves as our measure of the model’s confidence in its
prediction. We used the same bounding boxes as we used in M3, but
with the human annotated ground truth label for skills. This yields
a confidence-based calibration dataset for My with 66 samples.

Confidence Intervals. From each calibration dataset, we
compute the mean (¢*) and standard deviation (¢*) of the top tokens’
confidence scores. We do the same for the second top tokens, and get
ut and o*. Using these values, we define the following confidence
intervals:

* 4+ 4
ITopConf = [0 =0", p*+o7], ISecondTopConf = (p=o", p+o7].
These intervals capture the expected distribution of confidence

scores for top and second-ranked predictions across all calibration
instances.

C.2 Calibrated Confidence Scores

To obtain calibrated confidence scores for all the modules, we apply
a rule that maps raw confidence values into a stable binary value.
For a given confidence score ¢* (corresponding to the top prediction
for an instance), we check whether ¢* falls outside the calibrated
top-token interval or within the second-token interval:

e i
Confcal(C*) = 0 e ¢.IT0pC0nf) v (e ISecondTopConf),
1, otherwise.

Here, the function Conf,,;(c*) produces a binary calibrated
confidence score: 0 when the prediction is considered
low-confidence (uncertain), and 1 when the prediction is considered
high-confidence (confident). These calibrated scores are later
consumed by other components of the pipeline that determine
whether or not to query the human for that particular module.

Grounding the decision in confidence intervals estimated from
calibration data allows the system to identify both underconfident
correct predictions and overconfident incorrect predictions,
producing a more stable confidence signal than raw probabilities
alone. By introducing calibrated confidence scores, we ensure
that the system reasons over interpretable, statistically grounded
intervals rather than noisy probability values, providing more
reliable and consistent confidence estimates across all the modules.

C.3 Retrieval-Augmented Feedback for Error
Recovery

To enable the system to recover from past errors and adapt over time,

we integrate a retrieval-augmented generation (RAG) component

into both the food type identification module (M;) and the skill

selection module (M3). The goal of this component is to incorporate

HRI "26, March 16-19, 2026, Edinburgh, Scotland, UK

human-provided feedback into a persistent store, allowing the
pipeline to retrieve and reuse corrections when similar inputs are
encountered in the future. This mechanism provides a means of
continual learning from mistakes and reduces repeated queries to
the human user.

Embedded Feedback Store. We implement an
EmbeddedFeedbackStore that records feedback entries consisting
of the plate image (for mj) or bounding box image and food label
(for m3), together with the corrected output provided by the human.
For m1, embeddings are computed directly from the plate image
using the CLIP vision encoder [31], resulting in a purely visual
representation. For ms3, embeddings are computed jointly from
the bounding box image of the target food item and its textual
label using the CLIP vision—-language model [31], capturing both
visual and semantic context for skill selection. All embeddings
are normalized and stored persistently as vectors alongside the
corresponding ground-truth correction, which in our setup refers
to the a correct food type label for M; and the correct skill for
Ms. So whenever the system queries the human for feedback for a
particular module, the corresponding input (image or bounding
box image with label) together with its corrected output is added
to the feedback store for future retrieval and reuse.

Retrieval. At inference time, when M; or M3 produces a
prediction, the feedback store computes the CLIP embedding for
the current input and retrieves the most similar past entry using
cosine similarity. If the best match exceeds a similarity threshold,
the stored correction is reused. This correction is converted into
a probability distribution: the retrieved food type label (or skill) is
assigned a probability proportional to the similarity score, and the
remaining probability mass is evenly distributed across the other
candidate tokens. If no sufficiently similar correction is found, the
pipeline defaults to the module’s prediction.

This RAG-based mechanism allows the pipeline to learn
incrementally from its mistakes. By leveraging similarity search,
the system avoids repeating prior errors on similar inputs and
reduces unnecessary human queries. This provides a lightweight
but effective form of continual adaptation.

C.4 Query questions and feedback in user study

Four types of questions can be asked when executing the Always
Query method and our selected method in the user study:

(1) The robot will ask the user for help by asking the following
question: “Could you tell me a food item that is on the plate?”
Users can respond by providing any valid food item that is
present on the plate.

(2) The robot will ask the user for help by displaying the plate
image on the tablet. Users can respond by tapping 2 opposite
corners of the box on the screen to create a bounding box.

(3) The robot will ask the user for help by asking you the
following question: “For the food item on the plate, what
skill should I use?”. Users can respond by telling the robot
the skill that it should use.

(4) The robot will ask the user for help by displaying the
bounding box image on the tablet. Users can respond by
tapping 2 points in the following manner: for skewering, tap
two points that define the longer edge of the food item; for
scooping, tap the start and the end of the scoop; for twirling,
tap two points around where the user thinks the fork should
twirl the food item.

Rohan Banerjee et al.

D Bite Acquisition Architecture with Module
Heterogeneity

This architecture is similar to that described in Sec. C, with the
following modifications:

e Mj: The food detector is faulty, producing a random food
label with probability 0.9 (which lies outside of the set of food
items encountered in the "savory salad" and "Thanksgiving
meal" plates). In this scenario, the food detector assigns
a confidence of ¢; = 0.65. In the event of a success, M;
produces the label with the highest confidence score £* as

before, but with a confidence score ¢ =

, where ¢* is
Cmax,M;

the raw confidence score (Sec. C.2) and ¢y gy is the maximum
raw confidence score observed in the M; calibration set.

e M,: Similar to Sec. C, but with a confidence score ¢y = Cm*ax
where ¢* is the raw confidence score (Sec. C.2) and cpax, M,
is the maximum raw confidence score observed in the M,
calibration set.

e Mj: Similar to Sec. C, but with a confidence score ¢3 = crfuzx
where ¢* is the raw confidence score (Sec. C.2) and cpax M,
is the maximum raw confidence score observed in the M3
calibration set.

e My: Unchanged compared to Sec. C.

E Workload Model Conditioning

To predict workload for each of the bite acquisition modules
(Appendix C), we set the query type variables for the predictive
workload model as follows [3]:

e M;: d; = easy, resp; = MCQ, dist; = “no distraction task”

o My: d; = easy, resp; = BB, dist; = “no distraction task”

e Ms: d; = easy, resp; = MCQ, dist; = “no distraction task”

e My: dy = hard, resp; = BB, dist; = “no distraction task”

5

*

5

F Additional Synthetic Experiments: Systematic
Ablations

F.1 Additional experimental setup details.

We set the GraphQuery hyperparameter € = 1, and we assume
equal weight between querying and task reward (w = 0.5).
Independent variable settings considered:

e Number of modules N: [3, 5, 10, 15, 18, 25, 50, 75, 100]

e Graph redundancy structure Gys: [fully redundant (all-OR),
fully dependent (all-AND), fully redundant followed by fully
dependent (OR-then-AND), fully dependent followed by fully
redundant (AND-then-OR)]

e Module confidences c;: [(1.0, 0.1), (0.9, 0.2), (0.8, 0.3), (0.7,
0.4)], where (cp,,c;) are the high confidence value and low
confidence value, respectively, described in Sec. 6. We assume
that 3 of the modules in the module graph Gy are assigned
the low confidence value, and the rest are assigned the high
confidence value.

® Query costs g;: [0.08, 0.16, 0.32, 0.64]

Below, we vary each independent variable in isolation, fixing the
other variables to the setting described in Sec. 6.

F.2 Number of modules N

Full results for varying the number of modules N across module
selectors and querying algorithms are shown in Fig. 7. Key
takeaways:

e No metrics (besides Computation Time) vary as a function
of number of modules, except in different variable settings

A Human-in-the-Loop Confidence-Aware Failure Recovery Framework for Modular Robot Policies

HRI ’26, March 16-19, 2026, Edinburgh, Scotland, UK

Never Query Brute Force Graph Query Binary Tree Query ~ —— Confidence Query ~ —4— Topo Query
16 EE o 2, » 2 200 P
14 g s - 2 101 g —— - B -
g 12 £1s0 Y 4 g 2 os Bso y s
S o = o g/ 2 1
Poos T o Sou p <o El o
Soey ¢ 87 pd S o y 4 S os =" e
O o Eog yd am = 3 so ?«/f(/
02 8 2 :‘_;] o2 E oo
N 53 6% Somw N P
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Execute-First Query-Then-Execute ~ -B- Query-Until-Confident -4~ Query-Until-Confident-Workload-Aware ~ —#— Query-For-All
10 @ = 006
a) A 005 7 /
08 g @ oos :,.; .
3 o S oo I I — e P — -
2 3 2 2 2
© 04 -] T % 002 : 3
& £ Zoo & 3.
o K] Eon = ool g .
<} S
o. = O o,
5 10 15 18 25 5 10 15 18 25 5 10 15 18 25 5 10 15 18 25 5 10 15 18 25
Number of Modules Number of Modules Number of Modules Number of Modules Number of Modules

Figure 7: (top) Module selector comparison for varying the number of modules N in the module graph G, for the
QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE querying algorithm. (bottom) Querying algorithm comparison for varying the
number of modules N in the module graph Gy, for the GRAPHQUERY module selector. Plots show median, upper quartile, and
lower quartile values across 100 trials (mean for Task Cost).

(e.g. closer confidence values) where numerical stability is a
concern.

e When confidence values differ from (1,0.1), module
selector performance degrades at larger graph sizes due to
numerical underflow. We find that BINARYTREEQUERY is
the most sensitive, followed by GRAPHQUERY, followed by
BRUTEFORCE.

Recommendations. For module selectors, we recommend using
either BRUTEFORCE, GRAPHQUERY, or CONFIDENCEQUERY, with the
latter being the most scalable to increasing module graph size. For
querying algorithms, we recommend QUERY-UNTIL-CONFIDENT Or
QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE as they minimize
Total Failed Attempts and Total Timesteps.

F.3 Graph structure Gy

Full results for varying the graph structure Gys across module
selectors and querying algorithms are shown in Fig. 8. Key
takeaways:

F.3.1 Module selectors.

o Query Cost. For the variable setting shown in Fig. 8, we find

that Query Cost is insensitive to the redundancy structure.

Across other variable settings, we generally observe that
the query cost is lower for the all-OR redundancy structure,
compared to the other redundancy structures, because fewer

queries are needed for the overall system output to be correct.

Additionally, the query cost for the OR-then-AND structure
is slightly higher than that for the AND-then-OR redundancy
structure (because overall system success is more likely when
the final module is an OR module).

Total Failed Attempts. For the variable setting shown in
Fig. 8, we find that Total Failed Attempts is insensitive to
the redundancy structure (except for NEVERQUERY). Across
other variable settings, we observe that Total Failed Attempts
is lower for the all-OR redundancy structure. We additionally
observe that the relative ordering of module selectors
does not generally depend on the redundancy structure,
and proceeds roughly as follows (in descending order):
NEVERQUERY, BINARYTREEQUERY, BRUTEFORCE, followed
by GRAPHQUERY.

F.3.2

o Computation Time. We observe that Computation Time is
lower for the all-OR redundancy structure. GRAPHQUERY
tends to have a higher Computation Time than the other
module selectors (regardless of the redundancy structure)
due to the computational complexity of parallel graph
creation + parallel shortest-path searches.

Task Cost. For the variable setting shown in Fig. 8, we find
that Task Cost is insensitive to the redundancy structure
(except for NEVERQUERY). In other settings, NEVERQUERY
and BINARYTREEQUERY only achieve complete success for
the all-OR architecture, and have no success for the other
redundancies.

Total Timesteps. For the variable setting shown in Fig. 8,
we find that Total Timesteps is insensitive to the redundancy
structure (except for NEVERQUERY), with BINARYTREEQUERY
having a slightly higher value across-the-board compared to
the other module selectors.

Querying algorithms.

Query Cost. For the variable setting shown in Fig.
8, generally lower for most querying algorithms
in all-OR redundancy structure, compared to other
structures. In other low query cost settings: (1) higher
for QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE compared
to other methods, (2) higher in the hybrid structures
(compared to the pure structures) across-the-board.

Total Failed Attempts. Lower for all querying algorithms
in all-OR redundancy structure, compared to other
structures. We note the following rough ordering
across querying algorithms, regardless of graph
structure, in descending order: EXECUTE-FIRST
QUERY-THEN-EXECUTE QUERY-UNTIL-CONFIDENT
QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE. We also
notice the following ordering across graph structures,
regardless of querying algorithm, in descending order:
OR-then-AND > all-AND > AND-then-OR > all-OR.
Computation Time. Lower for all querying algorithms in
all-OR redundancy structure, compared to other structures.
We note that QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE

>

>

HRI "26, March 16-19, 2026, Edinburgh, Scotland, UK

has slightly higher computation time than other querying
algorithms, independent of graph structure.

o Task Cost. Fairly consistent across graph structures. In other
settings, QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE
tends to have the highest success rate across all querying
algorithms, as it is able to recover in some settings where
other querying algorithms fail (e.g. AND-then-OR, and
OR-then-AND structures).

o Total Timesteps. Lower for most querying algorithms
in all-OR redundancy structure, compared to other
structures. WE note the following roughly consistent
ordering across querying algorithms, regardless of
graph structure, in descending order: EXECUTE-FIRST
> QUERY-THEN-EXECUTE > QUERY-UNTIL-CONFIDENT ~
QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE, consistent
with the Total Failed Attempts trend.

Recommendations. For module selectors, we recommend using
either BRUTEFORCE, GRAPHQUERY, or CONFIDENCEQUERY, as all
3 have the best performance across redundancy structures. For
querying algorithms, we recommend QUERY-UNTIL-CONFIDENT
or QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE perform best
across the metrics (for all redundancies except all-OR, where
EXECUTE-FIRST and QUERY-AND-EXECUTE outperform the other
querying algorithms in Query Cost and Total Timesteps).

F.4 Confidence values c;

Full results for varying the confidence values c¢; across module
selectors and querying algorithms are shown in Fig. 9. Key
takeaways:

F.4.1 Module selectors.

e Query Cost. Generally higher when confidences are
closer together. Regardless of confidence level, generally
follows the following pattern in descending order:
BINARYTREEQUERY > GRAPHQUERY ~ BRUTEFORCE >
NEVER QUERY.

o Total Failed Attempts. Generally higher when confidences
are closer together. Regardless of confidence level,
generally follows the following pattern in descending
order: NEVERQUERY, GRAPHQUERY ~ BRUTEFORCE,
BINARYTREEQUERY.

o Computation Time. Generally higher when confidences are
closer together. GRAPHQUERY has much higher Computation
Time, followed by BRUTEFORCE, BINARYTREEQUERY and
NEVERQUERY.

o Task Cost. All module selectors (except NEVERQUERY) tend

to increase from 0.0 to 1.0 with less-separated confidences.

NEVERQUERY always has a value of 1.0, except in the all-OR
setting (not shown in Fig. 9).

e Total Timesteps. Generally higher when confidences
are closer together (for all module selectors except
NEVERQUERY).

F.4.2 Querying algorithms.

e Query Cost. Generally higher when confidences are closer
together. For low query cost settings (including Fig. 9),
QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE has the

highest Query Cost compared to other querying algorithms.

o Total Failed Attempts. Generally higher across all querying
algorithms when confidences are closer together. Lower
for QUERY-UNTIL-CONFIDENT than EXECUTE-FIRST and
QUERY-THEN-EXECUTE.

Rohan Banerjee et al.

o Computation Time. Generally higher = when
confidences are closer together. Slightly higher for
QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE compared to
the other querying algorithms.

e Task Cost. Generally higher when confidences are closer
together. Lower for QUERY-UNTIL-CONFIDENT than
EXECUTE-FIRST and QUERY-THEN-EXECUTE.

o Total Timesteps. Generally higher when confidences are
closer together. Regardless of confidence score, Total
Timesteps is generally lower for QUERY-UNTIL-CONFIDENT
compared to EXECUTE-FIRST and QUERY-THEN-EXECUTE.

Recommendations. For module selectors, we recommend
using either BRUTEFORCE or GRAPHQUERY, as they are the most
competitive across metrics regardless of the confidence level. For
querying algorithms, we recommend QUERY-UNTIL-CONFIDENT
(unless in the all-OR setting, in which case EXECUTE-FIRST or
QUERY-THEN-EXECUTE are the best at minimizing Total Timesteps).

F.5 Query Cost g;

Full results for varying the confidence values ¢; across module
selectors and querying algorithms are shown in Fig. 10. Key
takeaways:

F.5.1 Module selectors.

e Query Cost. Higher Query Cost across-the-board as
we increase the cost of querying, which is expected.
BINARYTREEQUERY generally has the highest Query Cost
(regardless of module query cost), while BRUTEFORCE and
GRAPHQUERY are lower.

Total Failed Attempts. Relatively invariant to the query cost
level.

e Computation Time. Generally highest for GRAPHQUERY,
regardless of the query cost level. In ascending order for
the other module selectors, generally see NEVERQUERY, then
BRUTEFORCE, then BINARYTREEQUERY.

Task Cost. Generally consistent for all methods, regardless
of query cost level. For higher query cost settings and
confidence settings with less separation (not shown in Fig.
10), we do observe consistent a Task Cost value of 0.0 across
all settings for BINARYTREEQUERY and NEVERQUERY.

Total Timesteps. Values are also generally invariant as a
function of query cost, with BINARYTREEQUERY having
a slightly higher value compared to BRUTEFORCE and
GRAPHQUERY.

F.5.2 Querying algorithms.
Query Cost. Query Cost generally increases as query cost
increases, as expected.
o Total Failed Attempts. Typical trend is EXECUTE-FIRST
> QUERY-THEN-EXECUTE > QUERY-UNTIL-CONFIDENT ~
QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE, regardless
of the query cost setting. In some settings, Total Failed
Attempts increases slightly for QUERY-UNTIL-CONFIDENT-
WORKLOAD-AWARE as a function of query cost.
Computation Time. Generally comparable across
querying algorithms, invariant to query cost
setting. In some scenarios (e.g. in Fig. 10),
QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE has a higher
computation time than the other querying algorithms.
e Task Cost. Generally comparable across querying
algorithms (0.0), invariant to query cost setting.
Sometimes observe degradation to 1.0 (in module

A Human-in-the-Loop Confidence-Aware Failure Recovery Framework for Modular Robot Policies HRI ’26, March 16-19, 2026, Edinburgh, Scotland, UK

Never Query Graph Query Brute Force Binary Tree Query ~—— Confidence Query ~ —4— Topo Query
B P
16 2271 & - . g o008 10} 4 - « ————— -
a2 \ / »- \ /
14 E b \ / 3 @018 \ /
- g \ / £ 000 08 =
D12 S \ / = - 8
o = \ / = @ 7
O e <5 \ / g o003 3 s S5
S o \ / S g
oe < \ / b= = =
o = \ 0.002]
3z os T \ / 3 < o ¥ =
<2 s \ / 3 = 8 s
3, \ / g-uum , . 02 S L .
02 £ \ / 3 <& + < b4
= - Qo o
all-AND all-OR AND-then-OR OR-then-AND all-AND all-OrR AND-then-OR OR-then-AND all-AND all-OR AND-then-OR OR-then-AND all-AND all-OrR AND-then-OR OR-then-AND all-AND all-OR /AND-then-OR OR-then-AND
Execute-First Query-Then-Execute -B- Query-Until-Confident ~ --a- Query-Until-Confident-Workload-Aware ~ —— Query-For-All
6 2 =
‘—‘/‘—‘ 8’ oo o0 3
s @ 002
2., =, m B0 % 2
S = p S 020 F
= 2 £ o00s] g
[54 - 2 2 015 =
5 = e o006 E [
2) P~ —
4 &1 .l = oo0e £ o0 s
P I VR Kl e & oo 005 <]
o ~ =]
= Oo o
all-AND all-OR AND-then-OR OR-then-AND all-AND all-OR AND-then-OR OR-then-AND all-AND all-OR AND-then-OR OR-then-AND all-AND all-OrR AND-then-OR OR-then-AND all-AND all-oR AND-then-OR OR-then-AND
Redundancy Redundancy Redundancy Redundancy Redundancy

Figure 8: Varying the graph redundancy structure for fixed querying algorithm (QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE;
top) and fixed module selector (GRAPHQUERY; bottom). Plots show median values across 100 trials (mean for Task Cost).

Never Query Graph Query Brute Force Binary Tree Query ~ —— Confidence Query ~ —4— Topo Query
16 2" B oo0 1t & > > -
14 E 8 @ 0.0175 g‘ls
2. 8y 5 o050 . B
=] = a 7]
o ———— < g 00 Sos ot}
Bros 2 .S o.0100 4 £
@ = s @ 04 B
S os 4 S ooors) =
o £ 2 oo e g
02 g 3 £ oo s
= Qo - 0
(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4) (1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4) (1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4) (1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4) (1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)
Execute-First Query-Then-Execute B Query-Until-Confident -4 Query-Until-Confident-Workload-Aware =~ —#— Query-For-All
2 B o020
6 g @ o075 08 21
oS s £ ooso - 25
2 S] 7
O a <, o 00125 8“ [
P, J . T S oowo v E
@ = = G 04 (=)
=3 © 6 5 00075 el —
&2 = E} = K
[B, 00050 ¥ 02 2
1] M g, £ o005 =3
I S ST SR N
(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4) (1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4) (1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4) .1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4) (1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)
Confidences Confidences Confidences Confidences Confidences

Figure 9: Varying the confidence levels for fixed querying algorithm (QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE; top) and
fixed module selector (GRAPHQUERY; bottom). Plots show median values across 100 trials (mean for Task Cost).

Never Query Graph Query Brute Force Binary Tree Query =~ —— Confidence Query
gn @ oo0s 10
30 1 @ " @1
- E*S Eooao g oo gjs
S 20 gn g 0003 é 06 g
21 3, 2 = =)
3 = T 0002 = os
8w €6 H g K
05 B Broon: S o2 =
g 3 o
0.08 0.16 0.32 0.64 0.08 0.16 0.32 0.64 0.08 0.16 0.32 0.64 0.08 0.16 0.32 0.64 0.08 0.16 0.32 0.64
Execute-First Query-Then-Execute B Query-Until-Confident -~& Query-Until-Confident-Workload-Aware
200 2] Lk TV S SRR
”5 /‘ E's \:n: Aevereeennnnninns & @ a oes Y ;
o E Bool memm £
8 R & oo g 2
o100 o g g ows g
5] = % oo = £
g ors 3 @ — 002 =
Soso T ES g g2
o2 = Soom 8o £
e 3
0.08 0.16 0.32 0.64 0.08 0.16 0.32 0.64 0.08 0.16 0.32 0.64 0.08 0.16 0.32 0.64 0.08 0.16 0.32 0.64
Workloads Workloads Workloads Workloads Workloads

Figure 10: Varying the module query costs for fixed querying algorithm (QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE; top)
and fixed module selector (GRAPHQUERY; bottom). Plots show median values across 100 trials (mean for Task Cost).

settings with smaller separation in confidences, o Total Timesteps. Generally invariant to query cost setting.
not shown in Fig. 10) for all methods besides Regardless of confidence score, Total Timesteps is generally
QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE. lower for QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE and

HRI "26, March 16-19, 2026, Edinburgh, Scotland, UK

QUERY-UNTIL-CONFIDENT compared to EXECUTE-FIRST and
QUERY-THEN-EXECUTE (except for the all-OR redundancy
structure, where the trend is flipped).

Recommendations. For module selectors, we recommend
using either BRUTEFORCE, GRAPHQUERY, or CONFIDENCEQUERY
as they are the most competitive across metrics regardless
of the module query cost. For querying algorithms, we
recommend QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE
or QUERY-UNTIL-CONFIDENT (QUERY-UNTIL-CONFIDENT-
WORKLOAD-AWARE if minimizing Query Cost and Total Failed
Attempts is most important; QUERY-UNTIL-CONFIDENT if
minimizing Computation Time is the most important).

F.6 Additional Ablation: Expert Confidence

We consider an ablation over an additional user variable: the expert
confidence value (cexpert, introduced in Sec. 3), to understand how
imperfect human feedback affects the performance of the module
selectors and querying algorithms. In our simulation, the expert
confidence cexpert represents the probability that a module query
produces the correct logical value for that module. We consider
the following settings for cexpert: [1, 0.8, 0.6, 0.4], which range from
a perfect expert (considered in Sec. 6) to a less confident expert.
Additionally, we adapt the module selectors to assign a confidence
of cexpert to modules that have already been queried.

F.6.1 Module selectors. We find that performance degrades for
all module selectors as cexpert decreases (Fig. 11), with Task
Cost degrading to 0 at the lowest confidence setting (cexpert =
0.4). For sufficiently low expert confidence, the module selectors
cannot determine whether a module has received the correct
feedback, leading to redundant querying of the same (upstream)
module. Across the module selectors, we find that BRUTE FORCE,
GRrRAPHQUERY, and CONFIDENCEQUERY perform best in the high
expert confidence regime. We also find that BINARYTREEQUERY
tends to under-query regardless of expert confidence value, leading
to high Task Cost.

F.6.2 Querying algorithms. We again find that all querying
algorithms degrade in performance as cexpert decreases (Fig.
11). For higher expert confidence values, we find that the two
QUERY-UNTIL-CONFIDENT variants are the best in Total Timesteps
and Total Failed Attempts. For lower expert confidence values, we
note that QUERY-UNTIL-CONFIDENT tends to over-query, because
the proxy task objective never becomes high enough to stop
querying, and QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE
tends to under-query, as the confidence gain due to querying is
insufficient to overcome the query cost.

Recommendations. For intermediate-to-high expert confidence
values, we would recommend either the BRUTEFORCE,
GRAPHQUERY, or CONFIDENCEQUERY module selectors, as they
achieve the lowest Task Cost with low Total Timesteps. Additionally,
we would recommend the two QUERY-UNTIL-CONFIDENT querying
algorithms if minimizing Total Timesteps is the most important,
and the EXECUTE-FIRST and QUERY-THEN-EXECUTE querying
algorithms in other scenarios.

Rohan Banerjee et al.

G Additional Synthetic Experiments: Module
Heterogeneity

Fig. 12 compares the GRAPHQUERY vs CONFIDENCEQUERY module
selectors for additional values of the module confidences
and query cost variance f (with fixed querying algorithm

QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE). We find that
GRAPHQUERY performs at least as well as CONFIDENCEQUERY

across these experimental settings.

H User Study Metrics

H.1 Subjective metrics

We asked the participants the following questions in terms
of Mental/Physical Demand, Effort, Subjective Success, and
Satisfaction, all on a Likert scale from 1-5:

(1) Mental/Physical Demand: For the last method, how
mentally/physically demanding was it for the robot to query
you?

(2) Effort: For the last method, how hard did you have to work
to make the robot pick up food items?

(3) Subjective Success: For the last method, how successful
was the robot in picking up food items?

(4) Satisfaction: For the last method, how satisfied are you
with how the robot balanced between trying to pickup
independently when possible and asking for help when
required?

H.2 Objective metrics
We define the following 3 objective metrics:

(1) Mean Queries Per Plate: %25:1 ZtTil 1{queried at t},
where B is the number of bites per plate and Tj, is the number
of timesteps needed for bite b.

(2) Mean Executions Per Plate: % Zle ZtTil 1{executed at ¢},
where B and Tj, are defined above.

(3) Mean Successful Bites Per Plate: % 25:1 1{b succeeded},
where B is defined above and we define bite b to have
succeeded if the robot acquired the bite after T}, timesteps.

I Full Acknowledgements

This work was partly funded by NSF CCF 2312774 and NSF
OAC-2311521, a LinkedIn Research Award, NSF 1IS-244213, NSF
1IS #2132846, CAREER #2238792, a PCCW Affinito-Stewart Award,
and by an AI2050 Early Career Fellowship program at Schmidt
Sciences. Research reported in this publication was additionally
supported by the Eunice Kennedy Shriver National Institute Of
Child Health & Human Development of the National Institutes of
Health and the Office of the Director of the National Institutes of
Health under Award Number T32HD113301. The content is solely
the responsibility of the authors and does not necessarily represent
the official views of the National Institutes of Health.

The authors would like to additionally thank Yuanchen Ju
and Zhanxin Wu for helping with figure creation, and all of the
participants in our two in-lab user studies, as well as the two
participants in our in-home user study.

Received 2025-09-30; accepted 2025-12-23

A Human-in-the-Loop Confidence-Aware Failure Recovery Framework for Modular Robot Policies HRI ’26, March 16-19, 2026, Edinburgh, Scotland, UK

Never Query Graph Query Brute Force Binary Tree Query ~—— Confidence Query ~ —4— Topo Query
10 % 2 2 10
oo1e

1 o @1

W 08 E £ o012 08 o
O o8 <5 Sos S0

S g S 0008 M g
g os = ° S 000 % 04 e
&, : o 3 000 & g
g £ oo o s

2 . Qo - - o.
1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4
Execute-First Query-Then-Execute B Query-Until-Confident -4 Query-Until-Confident-Workload-Aware —4&— Query-For-All
— @ ®m 27 - - - "3 10} & - °> *>
° g / /f P Ve

e S 2% / 8
O 4 f, 12 Sos / g
B - -, 2 / E”

g z 4 oe / S
R £ = / g .

- 3 _' - = O o o
1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4
Expert Confidence Expert Confidence Expert Confidence Expert Confidence Expert Confidence

Figure 11: Varying the expert query confidence for fixed querying algorithm (QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE;
top) and fixed module selector (GRAPH-QUERY; bottom). Plots show median values across 100 trials (mean for Task Cost).

Graph Query —+— Confidence Query

(b

B

Total Incorrect

=0.2
Total Failed Attempts
Total Incorrect

Total Failed Attempts

(1.0,0.1) (0.9,0.2) (0.8,0.3) (0.7,0.4) (1.0,0.1) (0.9,0.2) (0.8,0.3) (0.7,0.4) (08/03) (075,035 (07,0.4) (065,045 (0,05 (08/03) (0757035 (07,0.4) (065,045 (06,0.5)

./*/\\

B=0.4
Total Incorrect
Total Incorrect

Total Failed Attempts
Total Failed Attempts

(1.0,0.1) (0.9,0.2) (0.8,0.3) (0.7,0.4) ° (1.0,0.1) (0.9,0.2) (0.8,0.3) (0.7,0.4) (08/03) (075,035 (07,0.4) (065045 (06,05 (08/03) (075,035 (0.7,0.4) (065045 (0.6,0.5)

1 *_‘_‘\\

/”’H‘\

B=06

Total Incorrect

Total Incorrect

Total Failed Attempts
Total Failed Attempts

(1.0,0.1) (0.9,0.2) (0.8,0.3) (0.7,0.4) " (1.0,0.1) (0.9,0.2) (0.8,0.3) (0.7,0.4) (08,03) (0.75,0.35) (0.7,04) (0.65,0.45) (0.6,0.5) (0.8,03) (0.75,0.35) (0.7,04) (0.65,0.45) (0.6,0.5)

Confidences Confidences Confidences Confidences

Figure 12: Comparison between GRAPHQUERY and CONFIDENCEQUERY, as a function of varying module confidences and query
cost uniform noise f (for fixed querying algorithm: QUERY-UNTIL-CONFIDENT-WORKLOAD-AWARE), both in less overlapping
(left) and more overlapping (right) confidence regimes. Plots show median values across 100 trials (mean for Task Cost).

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Module Selectors
	4.1 Proxy Objective Optimization
	4.2 Binary Tree Query
	4.3 Graph Query

	5 Querying Algorithms
	6 Synthetic Simulation: Systematic Ablations
	6.1 Varying number of modules N
	6.2 Varying graph structure GM
	6.3 Varying confidence values ci
	6.4 Varying query costs qi

	7 Synthetic Simulation: Module Heterogeneity
	8 Robot-Assisted Bite Acquisition Experiments
	8.1 In-lab real-robot user study
	8.2 In-lab real-robot user study with module heterogeneity
	8.3 In-home real-robot user study

	9 Discussion
	References
	A Proxy Objectives
	B Algorithm Performance Analysis
	B.1 GraphQuery
	B.2 MIP

	C Bite Acquisition Architecture
	C.1 Calibration Datasets and Confidence Intervals
	C.2 Calibrated Confidence Scores
	C.3 Retrieval-Augmented Feedback for Error Recovery
	C.4 Query questions and feedback in user study

	D Bite Acquisition Architecture with Module Heterogeneity
	E Workload Model Conditioning
	F Additional Synthetic Experiments: Systematic Ablations
	F.1 Additional experimental setup details.
	F.2 Number of modules N
	F.3 Graph structure GM
	F.4 Confidence values ci
	F.5 Query Cost qi
	F.6 Additional Ablation: Expert Confidence

	G Additional Synthetic Experiments: Module Heterogeneity
	H User Study Metrics
	H.1 Subjective metrics
	H.2 Objective metrics

	I Full Acknowledgements

