
A Human-in-the-Loop Confidence-Aware Failure Recovery
Framework for Modular Robot Policies

Rohan Banerjee
‡

Cornell University

Krishna Palempalli
∗

Cornell University

Bohan Yang
∗

Cornell University

Jiaying Fang

Cornell University

Alif Abdullah

Cornell University

Tom Silver

Princeton University

Sarah Dean
†

Cornell University

Tapomayukh Bhattacharjee
†

Cornell University

Figure 1: Our human-in-the-loop framework for failure recovery leverages confidence estimates from a modular policy, along

with predicted estimates of user workload, to decide what to ask and when to act autonomously.

Abstract

Robots operating in unstructured human environments inevitably

encounter failures, especially in robot caregiving scenarios. While

humans can often help robots recover, excessive or poorly targeted

queries impose unnecessary cognitive and physical workload on the

human partner. We present a human-in-the-loop failure-recovery

framework for modular robotic policies, where a policy is composed

of distinct modules such as perception, planning, and control,

any of which may fail and often require different forms of

human feedback. Our framework integrates calibrated estimates

of module-level uncertainty with models of human intervention

cost to decide which module to query and when to query the

human. It separates these two decisions: a module selector identifies

the module most likely responsible for failure, and a querying

algorithm determines whether to solicit human input or act

* Equal Contribution † Equal Advising ‡ rbb242@cornell.edu

Acknowledgement: This work was partly funded by NSF CCF 2312774 and NSF

OAC-2311521, a LinkedIn Research Award, NSF IIS-244213, NSF IIS #2132846, CAREER

#2238792, a PCCWAffinito-Stewart Award, anAI2050 Early Career Fellowship program

at Schmidt Sciences, and NIH #T32HD113301. Full acknowledgements in Appendix I.

This work is licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License.

HRI ’26, Edinburgh, Scotland, UK
© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2128-1/2026/03

https://doi.org/10.1145/3757279.3788668

autonomously. We evaluate several module-selection strategies and

querying algorithms in controlled synthetic experiments, revealing

trade-offs between recovery efficiency, robustness to system and

user variables, and user workload. Finally, we deploy the framework

on a robot-assisted bite acquisition system and demonstrate, in

studies involving individuals with both emulated and real mobility

limitations, that it improves recovery success while reducing the

workload imposed on users. Our results highlight how explicitly

reasoning about both robot uncertainty and human effort can enable

more efficient and user-centered failure recovery in collaborative

robots. Supplementary materials and videos can be found at:

emprise.cs.cornell.edu/modularhil.

CCS Concepts

• Human-centered computing→ Accessibility technologies;

• Computer systems organization→ Robotics.

Keywords

Human-in-the-loop Methods, Failure Recovery

ACM Reference Format:

Rohan Banerjee
‡
, Krishna Palempalli

∗
, Bohan Yang

∗
, Jiaying Fang, Alif

Abdullah, Tom Silver, Sarah Dean
†
, and Tapomayukh Bhattacharjee

†
. 2026.

A Human-in-the-Loop Confidence-Aware Failure Recovery Framework for

Modular Robot Policies. In Proceedings of the 21st ACM/IEEE International
Conference on Human-Robot Interaction (HRI ’26), March 16–19, 2026,

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1145/3757279.3788668
http://emprise.cs.cornell.edu/modularhil

HRI ’26, March 16–19, 2026, Edinburgh, Scotland, UK Rohan Banerjee et al.

Edinburgh, Scotland, UK. ACM, New York, NY, USA, 17 pages. https:

//doi.org/10.1145/3757279.3788668

1 Introduction

Robots deployed in the wild inevitably fail, especially when

assisting individuals with mobility limitations in performing

activities of daily living (ADLs) in unstructured home

environments [13, 37, 40]. While humans can help robots

recover [3, 10], excessive querying imposes cognitive and

physical workload on the human partner [16, 36]. Designing

robots that know what and when to ask humans is therefore

central to effective human–robot interaction. We focus on modular

robot systems, which are more interpretable than end-to-end

vision–language–action (VLA) policies, and thus more amenable

to structured failure recovery. However, failures can arise in any

of the perception, planning, or control modules, each requiring

different forms of human feedback.

Failure recovery in modular systems is difficult for two

reasons. First, identifying which module has failed is non-trivial;

a perception error can cascade into planning and execution,

making it unclear where intervention is most effective. Second,

module confidence scores are often miscalibrated and do not

reliably predict whether a task will succeed. Over-querying risks

frustrating users, while under-querying risks repeated failures that

undermine both task performance and trust. Properly balancing

task success and human workload
1
lies at the heart of collaborative

autonomy. By combining confidence-aware reasoning with models

of human workload [3, 11, 32], we can design workload-aware
interaction strategies that recover from failures more efficiently

with high user satisfaction. This is crucial in assistive settings such

as physical robot caregiving, where reliable task performance and

user experience affect the acceptability of robot assistance.

To address the challenge of balancing recovery efficiency with

user satisfaction, we propose a human-in-the-loop failure recovery

framework for modular robot policies that integrates calibrated

module-level uncertainty with models of human workload. Our

framework is broadly applicable to modular architectures, even

VLAs themselves (which can be treated as unitary modules). The

framework makes two key decisions at every recovery attempt.

First, amodule selector determines which component of the modular

policy to query, e.g. perception or planning. Second, a querying
algorithm determines whether to query the human at all or to act

autonomously. This decision is critical for trading off the expected

gain in task-level success against user workload. We formulate

these decisions within a sequential decision-making framework,

and evaluate several module-selection strategies and querying

algorithms. We then deploy the framework on a robot-assisted

bite acquisition system [3, 13, 14, 37], demonstrating improved

recovery success and reduced user querying workload across

studies involving individuals with both emulated and real mobility

limitations. Our work makes the following novel contributions:

• We propose a human-in-the-loop failure-recovery framework

for modular robotic policies that makes two complementary

decisions: a module selector chooses which component of the

policy to query, and a querying algorithm decides whether and

when to solicit human input versus act autonomously.

• We incorporate calibrated estimates of module-level uncertainty

together with models of human intervention cost to guide both

decisions, enabling robots to recover more efficiently and to avoid

unnecessary queries.

1
In this work, we use the terms workload and query cost interchangeably.

• We conduct systematic evaluations of several module-selection

strategies (e.g. brute-force, graph-based, binary-tree, and mixed

-integer programming (MIP) selectors) and querying algorithms

(e.g. execute-first, query-then-execute, query-until-confident,

andworkload-aware variants) in controlled synthetic experiments,

revealing trade-offs in robustness to system and user variables,

efficiency, and user workload.

• We demonstrate the approach in a real-world robot-assisted bite

acquisition task, achieving higher recovery success and lower

user querying workload compared to baselines in two in-lab

studies with emulated limitations and an in-home study involving

users with real mobility limitations.

2 Related Work

Anomaly detection and recovery in robotics. Robotic

policies, whether end-to-end or modular, are prone to failure

during execution, especially in unstructured environments or when

encountering novel objects. Despite recent advances in end-to-end

robot learning, these approaches can be difficult to interpret

[1, 8, 41]. In contrast, modular methods can offer more predictable

and controllable performance in certain scenarios. In this work, we

focus on full-stack modular methods that consider failure detection

and recovery across different modules of a robot system. While

some human-in-the-loop approaches [2, 10, 22] assume that the

system is in a failure state where recovery is required, our approach

includes failure detection using confidence estimates.

It is natural to represent such problems using a graph

representation, as in prior work on online approaches for robot

failure detection and recovery [2, 7, 29]. Additionally, the overall

interaction process can be modeled by certain types of graphs,

ranging from finite-state machines [7], MDPs/POMDPs [12, 29],

and Behavior Trees [2, 6, 26]. Although graph representations

have been widely studied in prior work, our method goes further

by not only modeling systems using graphs but also leveraging

graph algorithms to select which modules to query for information

or intervention. In particular, two of our four proposed methods

for selecting which modules to query (which we denote module

selectors) are graph-based methods.

Robots that ask for help. Robot systems may decide to query

humans on the basis of several different criteria. Some approaches

ask for help when a failure is detected after a robot action has

been executed [21, 38], some based on a confidence estimate about

potential robot actions to take [27, 33], and others based on an

estimate about the potential information gain that could arise from

soliciting human feedback [10, 30]. Departing from existing work,

our query rules depend on both module confidence values and

estimated human workload costs of querying.

The types of feedback the robot can ask for can also vary, ranging

from natural language [5, 33, 35], to actions [21, 38, 39], to labels [5].

Our framework that detects the module to be queried is agnostic to

the specific types of feedback. Unlike prior work that queries for a

single action-selection module [19, 33] or reward model [10], we

simultaneously consider asking for help for multiple modules in a

full-stack policy architecture.

3 Problem Formulation

Module graph.We assume that our robot policy architecture P :

𝑆 → 𝐴 is structured as a module graph 𝐺𝑀 , which describes the

relationships between the 𝑁 modules in the architecture. Here,

𝑆 represents the policy input state (e.g. RGB-D images), and 𝐴

represents the policy action output (e.g. robot end-effector pose).

The vertices in𝐺𝑀 aremodules, and an edge exists from onemodule

𝑀𝑖 to another module𝑀𝑗 if the output of𝑀𝑖 is an input to𝑀𝑗 .

https://doi.org/10.1145/3757279.3788668
https://doi.org/10.1145/3757279.3788668

A Human-in-the-Loop Confidence-Aware Failure Recovery Framework for Modular Robot Policies HRI ’26, March 16–19, 2026, Edinburgh, Scotland, UK

Figure 2: Overall human-in-the-loop decision failure recovery framework, grounded in the robot-assisted bite acquisition

domain. The recovery framework first calls a module selector to decide which of the modules to query for (e.g. the skill selector).

The framework then calls a querying algorithm, which decides whether to ask the user for help or act autonomously.

A module is a tuple 𝑀 = (𝜋,X,Y, 𝑐, 𝑞(𝑡)) where 𝜋 : X → Y is

a policy function from input space X to output space Y, 𝑐 : X →
[0, 1] is a confidence score, and 𝑞(𝑡) is a time-dependent cost for

querying the human about the module. For instance, a module

could be a perception module that extracts geometric information

about the robot’s environment from RGB-D input, or a planning

module that extracts a robot trajectory given obstacle states in the

environment. We assume that one module in𝐺𝑀 (which we denote

𝑀1) takes in the state 𝑠 ∈ 𝑆 (i.e. X = 𝑆), and one module (which we

denote𝑀𝑁) produces a final action 𝑎 ∈ 𝐴 (i.e. Y = 𝐴), with other

modules having arbitrary input/output spaces.

Research problem. Our goal is to decide what and when to

query, which we decompose into (1) a module selector algorithm

𝜓𝑚𝑠 which chooses a single module, and (2) a querying algorithm

𝜓𝑞 that decides whether to query or to execute the autonomous

action 𝑎 = P(𝑠) ∈ A. For a particular state 𝑠 ∈ 𝑆 , the module

selector algorithm𝜓𝑚𝑠 and querying algorithm𝜓𝑞 should minimize

𝐽 (𝜓𝑚𝑠 ,𝜓𝑞), the weighted sum of the query cost 𝐽query (𝑡 ;𝜓𝑚𝑠 ,𝜓𝑞)
and the task cost 𝐽

task
(𝑡 ;𝜓𝑚𝑠 ,𝜓𝑞), over the interaction horizon 𝑇 :

𝐽 (𝜓𝑚𝑠 ,𝜓𝑞) =
1

𝑇

𝑇∑︁
𝑡=1

(
𝑤𝐽query + (1 −𝑤) 𝐽

task

)
=

1

𝑇

𝑇∑︁
𝑡=1

©­«𝑤
∑︁

𝑀𝑖 ∈Ω (𝑡)
𝑞𝑖 (𝑡) + (1 −𝑤) (1 − 𝑟 (𝑡))ª®¬ (1)

where𝑤 ∈ [0, 1] determines the trade-off between minimizing

human workload and recovering from failures efficiently, Ω(𝑡)
denotes the set of modules for which we query at time 𝑡 ,𝑀𝑖 refers to

an individual module in this set, 𝑞𝑖 (𝑡) is the query cost for module

𝑖 , and 𝑟 (𝑡) is the binary task reward, which is equal to 1 if the

execution succeeds, and 0 otherwise.

Human feedback. We assume that for every module 𝑀𝑖 , the

user can provide feedback 𝑓 ∈ Y𝑖 by choosing a possible output of

that module (e.g. classifying an object or selecting a high level skill).

When we receive this feedback, we replace the module output with

the expert feedback 𝑓 , along with an expert confidence 𝑐 = 𝑐expert.

Module redundancy. The overall task reward 𝑟 (𝑡) depends on
the success of individual modules. The modules can be structured

in two ways, depending on the robot system architecture:

• A redundant manner, where at least one module𝑀𝑖 must succeed

for their combination to succeed, so success is a union. For

example, a policy architecture may include two redundant

modules that predict object material properties: an off-the-shelf

foundation model, and a domain-specific neural network [40].

• A non-redundant manner, where all modules 𝑀𝑖 must succeed

for their combination to succeed, so success is an intersection.

For example, a goal-reaching manipulation policy architecture

may require two modules to succeed: a goal inference module,

and a planning module that infers a trajectory to the goal [25].

The overall success 𝑟 (𝑡) depends on redundant and non-redundant

combinations of modules, based on the robot system architecture.

4 Module Selectors

The module selector algorithms𝜓𝑚𝑠 select which module to query

by considering the 1-timestep version of the overall objective (Eq.

1). While we cannot determine a priori whether each module 𝑀𝑖
is in failure or success state, we have access to confidences 𝑐𝑖 . We

consider three proxy objectives to minimize:

Proxy objective 1 (product-of-confidences):
𝑤
∑
𝑀𝑖 ∈Ω (𝑡) 𝑞𝑖 (𝑡) + (1 −𝑤) (1 −∏

𝑀𝑖∉Ω (𝑡) 𝑐𝑖) (2)

Proxy objective 2 (sum-of-uncertainties):

𝑤
∑
𝑀𝑖 ∈Ω (𝑡) 𝑞𝑖 (𝑡) + (1 −𝑤)∑𝑀𝑖∉Ω (𝑡) (1 − 𝑐𝑖) (3)

Proxy objective 3 (redundancy-dependent):

HRI ’26, March 16–19, 2026, Edinburgh, Scotland, UK Rohan Banerjee et al.

𝑤
∑
𝑀𝑖 ∈Ω (𝑡) 𝑞𝑖 (𝑡) + (1 −𝑤) (1 − 𝑟 (Ω(𝑡)) (4)

where reward estimate 𝑟 (Ω(𝑡)) combines sums (redundant) and

products (non-redundant) of confidences for modules 𝑀𝑖 ∉ Ω(𝑡)
(see Appendix A for justifications for how each proxy objective

approximates 𝐽
task

).

We consider four module selector algorithms—two direct proxy

optimization algorithms (Mixed-Integer Programming and

Brute-Force) and two graph-based algorithms (Binary Tree

Query andGraph Query). We also consider three baseline module

selectors, two of which do not consider query costs or confidence

scores, and one that only considers confidence scores. The baselines

are (1) Never Query which does not choose any module to query,

(2) Topo Query which simply selects the first module in the

topological ordering of the module graph 𝐺𝑀 which has not been

previously selected, and (3) Confidence Query which selects the

module with the lowest confidence score.

4.1 Proxy Objective Optimization

We consider two module selectors that directly use the

redundancy-dependent proxy objective (Eq. 4). TheMixed-Integer

Programming (MIP) module selector directly minimizes this

objective using a mixed-integer solver (SCIP [4]). The Brute-Force

module selector evaluates this objective for querying each module

𝑀𝑖 in the module graph 𝐺𝑀 , and then selects the module𝑀𝑖 that

achieves the minimal objective.

4.2 Binary Tree Query

This algorithm uses a binary tree graph to model the yes/no

decision of querying each module. The edge weights are defined

so that paths from the root to the leaves correspond to the

product-of-confidences proxy objective (Eq. 2). We then treat the

module optimization problem as a shortest-cost path problem,

running Dijkstra’s algorithm on the graph to obtain the module

𝑀𝑖 .

The binary tree graph 𝐵 = (𝑉 , 𝐸) (shown in Fig. 3 (left)) has

edges 𝐸 corresponding to the actions of querying 𝑎query or acting

autonomously 𝑎auto for module𝑀𝑖 , and vertices 𝑉 that encode the

querying decisions of modules prior to module𝑀𝑖 in the topological

ordering of the module graph𝐺𝑀 . The edge costs for query actions

are 𝐶 (𝑒) = 𝑞𝑖 (𝑡), representing the query cost for module 𝑀𝑖 . The

edge costs for autonomous actions are chosen to create a telescoping

sum with the correct product of confidences. In particular, 𝐶 (𝑒) =
(1 − 𝑐𝑖)

∏
𝑗∈𝑝𝑟𝑒𝑣 𝑐 𝑗 , where 𝑝𝑟𝑒𝑣 are prior autonomous modules on

the path from root to𝑀𝑖 , and if 𝑝𝑟𝑒𝑣 is empty, 𝐶 (𝑒) = 1 − 𝑐𝑖 .

4.3 Graph Query

This algorithm constructs a directed graph representing the

modular policy and treats module selection as a shortest path

problem, running Dijkstra’s algorithm on the graph to select the

module 𝑀𝑖 (equivalent to optimizing the sum-of-uncertainties

objective, Eq. 3).

Given the topological ordering of modules in the module graph

𝐺𝑀 , the graph𝐺 = (𝑉 , 𝐸) is shown in Fig. 3 (middle), where vertices

𝑉 correspond to the state of each module, and edges 𝐸 correspond

to actions, both query 𝑎query and autonomous 𝑎auto. The vertices𝑉

consist of an initial state 𝑠init and pairs of success and failure states

for each module 𝑀𝑖 (𝑠𝑀𝑖 ,success and 𝑠𝑀𝑖 ,failure). The edge costs for

query actions are a scaled version of the query cost 𝐶 (𝑒) = 𝜖𝑞𝑖 (𝑡),
with scaling factor 𝜖 > 0 (for module selectors). The edge costs for

autonomous actions are the module uncertainties 𝐶 (𝑒) = 1 − 𝑐𝑖 .

5 Querying Algorithms

Querying algorithms decide whether to make a query or execute

the action 𝑎 produced by the final action module𝑀𝑁 (Sec. 3). We

consider four querying algorithms and one baseline, illustrated in

Fig. 3 (right). They use the following primitives:

• ForwardPass: represents passing the current state 𝑠 ∈ S
and query set Ω(𝑡) through all of the modules in the module

graph 𝐺𝑀 to yield the final action 𝑎 and updated confidences.

In the manipulation setting, this could represent passing the

current perceptual state (e.g. RGB-D camera data) to the policy

architecture, producing the desired end-effector pose, along with

confidences for all modules in the policy architecture.

• Execute: represents executing the action 𝑎 and observing

overall boolean 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 . In the manipulation setting, this could

represent commanding the robot to the desired end-effector pose

and assessing whether the manipulation task was successful.

All querying algorithms call the module selector𝜓𝑚𝑠 to select a

candidate module to query, but differ in howmany queries are made

prior to execution. The Execute-First algorithm initially executes

the autonomous action 𝑎 from the ForwardPass primitive. If 𝑎 fails,

it alternates between calling the module selector𝜓𝑚𝑠 and executing

until success. Query-then-Execute always alternates between

calling the module selector𝜓𝑚𝑠 and executing until success.

Algorithm 1 Execute-First andQuery-then-Execute.

1: if Execute-First then

2: 𝑎 = ForwardPass(∅)
3: 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = Execute(𝑎)
4: else if Query-then-Execute then

5: 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = FALSE

6: end if

7: while 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = FALSE do

8: Ω (𝑡) = 𝜓𝑚𝑠 (𝐺𝑀)
9: 𝑎 = ForwardPass(Ω (𝑡))
10: 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = Execute(𝑎)
11: end while

Algorithm 2 Query-until-Confident andQuery-until

-Confident-Workload-Aware;Query-For-All baseline.

1: 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = FALSE

2: while 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = FALSE do

3: repeat

4: Ω (𝑡) = 𝜓𝑚𝑠 (𝐺𝑀)
5: if Query-until-Confident then

6: 𝑆𝑡𝑜𝑝𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = [𝑟 (Ω (𝑡)) > 𝜏]
7: else if Query-until-Confident-Workload-Aware then

8: 𝑆𝑡𝑜𝑝𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = [𝑐expert − 𝑐𝑖 < 𝜆𝑞𝑖 (𝑡)]
9: else if Query-For-All then

10: 𝑆𝑡𝑜𝑝𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = [Ω (𝑡) = ∅]
11: end if

12: until 𝑆𝑡𝑜𝑝𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = TRUE

13: 𝑎 = ForwardPass(Ω (𝑡))
14: 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = Execute(𝑎)
15: end while

Query-until-Confident repeatedly calls 𝜓𝑚𝑠 until

the proxy task reward estimate 𝑟 (Ω(𝑡)) (Eq. 4) exceeds

a certain threshold 𝜏 , then executes the action 𝑎.

Query-until-Confident-Workload-Aware repeatedly calls

𝜓𝑚𝑠 until the confidence gain due to querying module 𝑀𝑖 ,

𝑐expert − 𝑐𝑖 (𝑐expert defined in Sec. 3), is less than the scaled cost of

querying 𝜆𝑞𝑖 (𝑡), for scaling factor 𝜆 > 0 (for querying algorithms).

A Human-in-the-Loop Confidence-Aware Failure Recovery Framework for Modular Robot Policies HRI ’26, March 16–19, 2026, Edinburgh, Scotland, UK

Figure 3: (left) BinaryTreeQuery graph example for 𝑁=3, (middle) GraphQuery graph example for 𝑁=3, (right) Querying

algorithms and Query-For-All baseline, which decide when to query (calling module selector 𝜓𝑚𝑠) and when to execute

actions (calling ForwardPass to get action 𝑎, then calling Execute). Querying algorithms include Execute-First, which

executes once prior to starting to query, Query-then-Execute, which alternates between querying and execution, and

Query-until-Confident/Query-until-Confident-Workload-Aware, both of which repeatedly query until a stopping

condition is met. The Query-For-All baseline queries for all modules before execution.

Finally, the Query-For-All baseline repeatedly calls 𝜓𝑚𝑠 until it

has queried for all modules, then executes the resultant action 𝑎.

6 Synthetic Simulation: Systematic Ablations

We develop a synthetic module simulation to investigate how

system and user variables affect module selector and querying

algorithm performance (Secs. 4, 5). Our simulation uses 𝑁 modules

connected via a random module graph 𝐺𝑀 , where modules are

implemented as logic gates (AND/OR) operating on Boolean inputs

(including a Boolean state 𝑠). Individual modules are set to be in

either a success or failure state: modules in success states output

their logic gate value, while modules in failure states always output

False. See Appendix F.1 for hyperparameter details (including

proxy objective weighting and GraphQuery 𝜖).

Independent variables.We examine four variables covering

key system and user factors that affect robot and human-robot

interaction performance (full settings in Appendix F.1). We consider

three system variables:

• The number of modules 𝑁 (Sec. 6.1). The number of modules

in a robot policy architecture can vary, ranging from simple

modular perception, planning, and control architectures, to more

complex modular architectures involving up to 100 modules.

• Module redundancy/graph structures 𝐺𝑀 (Sec. 6.2). Robot

policy architectures include both redundant and non-redundant

structures (Sec. 3). Different module selectors have different

redundancy assumptions based on their proxy objective. We

consider 4 redundancy structures with varied module types and

orderings: fully redundant (all-OR), fully dependent (all-AND),

fully redundant followed by fully dependent (OR-then-AND),

fully dependent followed by fully redundant (AND-then-OR).

• Confidence values 𝑐𝑖 (Sec. 6.3). Robot policy architectures can

have a diversity of confidence scores across the modules. We

assign either a high or a low confidence value to each module

in 𝐺𝑀 . We additionally treat a module’s confidence value as the

probability that the module is in a success state.

And we consider one user variable:

• Query costs 𝑞𝑖 (Sec. 6.4). The costs of querying for each module

in a policy architecture can vary, due to the diversity of feedback

types. We consider different values of uniform query costs 𝑞𝑖 for

all modules.

We vary each independent variable in isolation. When a variable

is not varied, we fix its value as follows: (1) 𝑁=10 modules,

(2) Fully dependent (all-AND) module structure, (3) 3 modules

with confidence 0.1 and all other modules with confidence 1,

(4) Uniform query cost of 0.32. We also assume no noise in the

expert (𝑐expert=1.0). Additionally, we use a fixed querying algorithm

(Query-Until-Confident-Workload-Aware) when analyzing

module selectors, and a fixed module selector (GraphQuery) when

analyzing querying algorithms.

Metrics. We evaluate the methods using 5 metrics (lower is better):

• Task Cost. 0 if the agent successfully recovered from the failure

after𝑇 timesteps, 1 otherwise. This represents whether the robot

could recover from the failure given its time horizon constraint.

• Query Cost.

∑𝑇
𝑡=1 𝑏𝑡𝑞𝑖 (𝑡), where 𝑇 is the number of timesteps

needed to achieve success or the maximum time horizon (which

is proportional to the number of modules 𝑁), and 𝑏𝑡 is a binary

indicator variable for whether the robot queried at timestep 𝑡 .

This represents the total user workload used to recover from the

robot’s failure.

• Number of Failed Attempts.

∑𝑇
𝑡=1 𝑔𝑡 , where 𝑔𝑡 is a binary

indicator variable for whether a failed execution occurred at

timestep 𝑡 . This represents the number of failed robot executions

encountered before the robot recovered from the failure.

• Computation Time.

∑𝑇
𝑡=1 (𝑇𝑖𝑚𝑒 (𝑡)), where 𝑇𝑖𝑚𝑒 (𝑡) is the

total runtime between successive EXECUTE statements. This

represents the total computation time used by the robot to run

the module selector and the querying algorithm at each timestep

(not including the time required to query).

• Total Timesteps 𝑇 . This includes both the number of queries

and the number of failed executions encountered before the robot

recovered from the failure.

Fig. 4(a) compares the algorithm performance for each variable,

highlighting one metric
2
(full results detailed in Appendix F).

We additionally highlight results in Appendix F.6 for varying

an additional user variable, the expert confidence level 𝑐expert
(introduced in Sec. 3), where we find that the BruteForce and

GraphQuery module selectors and bothQuery-Until-Confident

2
Because the computation time of the GraphQuery exceeded 1 second for graph sizes

𝑁 ≥ 50, we omit the computation time for this module selector. Additionally, we omit

reporting MIP results for all graph sizes because its computation time also exceeds

this threshold.

HRI ’26, March 16–19, 2026, Edinburgh, Scotland, UK Rohan Banerjee et al.

0 25 50 75 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

C
om

pu
ta

tio
n

Ti
m

e
(s

)

(a)

all-AND all-OR AND-then-OR OR-then-AND
0

3

6

9

12

15

18

To
ta

l T
im

es
te

ps

(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 C
os

t

0.08 0.16 0.32 0.64
0

3

6

9

12

15

18

To
ta

l T
im

es
te

ps

(0.8, 0.3) (0.75, 0.35) (0.7, 0.4) (0.65, 0.45) (0.6, 0.5)
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ta
sk

 C
os

t

(b)
Low Variance (= 0.4)

5 10 15 18 25
Number of Modules

0.00

0.01

0.02

0.03

0.04

0.05

0.06

C
om

pu
ta

tio
n

Ti
m

e
(s

)

all-AND all-OR AND-then-OR OR-then-AND

Redundancy

0
2
4
6
8

10
12
14
16
18

To
ta

l T
im

es
te

ps

(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)

Confidences

0.0

0.2

0.4

0.6

0.8

Ta
sk

 C
os

t

0.08 0.16 0.32 0.64
Query Costs

0

2

4

6

8

10

12

14

16

To
ta

l T
im

es
te

ps

(0.8, 0.3) (0.75, 0.35) (0.7, 0.4) (0.65, 0.45) (0.6, 0.5)

Confidences

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ta
sk

 C
os

t

High Variance (= 0.6)

Never Query Brute Force Graph Query Binary Tree Query Confidence Query Topo Query

Execute-First Query-Then-Execute Query-Until-Confident Query-Until-Confident-Workload-Aware Query-For-All

Figure 4: (a) Systematic ablation experiments, showing the 4 independent variables in our simulations: (1) number ofmodules, (2)

graph redundancies, (3) confidences, (4) query costs, with median values across 100 trials (mean for Task Cost)
2
. We find that the

BruteForce and GraphQuery module selectors (along with the ConfidenceQuery baseline) are the most robust to varying

redundancy, confidences, and query costs, with BruteForce and ConfidenceQuery being the most scalable. Additionally,

we find that theQuery-until-Confident andQuery-until-Confident-Workload-Aware querying algorithms are the

most robust across redundancy and query costs, withQuery-until-Confident having the best scalability and robustness to

confidences; (b) Module heterogeneity experiments. We find that GraphQuery outperforms ConfidenceQuery, particularly

when module confidences overlap and workload variance 𝛽 is high. Detailed results in Appendix F.

querying algorithms perform best in high expert confidence

regimes, with performance degrading as the confidence decreases.

6.1 Varying number of modules 𝑁

Module selectors.We find that all metrics except for Computation
Time are invariant to 𝑁 , for all module selectors except

NeverQuery and TopoQuery. ConfidenceQuery is the most

scalable module selector with linear time complexity in 𝑁 (Fig.

4(a)), making it the most computationally efficient for large policy

architectures. Since Computation Time scales with 𝑇 , methods that

require many timesteps (i.e. NeverQuery and TopoQuery) incur

higher computation time.

Querying algorithms. We find that all metrics except

Computation Time are invariant to 𝑁 , for all querying

algorithms except Query-For-All, with Task Cost and

Query Cost of 0 and 0.96, respectively. We note that

Query-Until-Confident-Workload-Aware has the highest

Computation Time (Fig. 4(a)), due to the additional step to

predict the cost of querying, while the other three querying

algorithms have nearly-identical values for Computation Time.
For large robot policy architectures, we recommend not selecting

Query-Until-Confident-Workload-Aware if runtime is crucial.

6.2 Varying graph structure 𝐺𝑀
Module selectors.We find that all metrics are lower for the all-OR

structure across module selectors (except Query Cost, which is

invariant to the structure). For this redundant structure, there

is little benefit to ask for help to recover from failures, leading

NeverQuery and TopoQuery to perform well in Total Failed
Attempts and Total Timesteps. Module selector rankings (Fig. 4(a))

remain invariant for the other redundancy structures. We find that

GraphQuery is competitive with the other module selectors, even

when its proxy objective does not match the redundancy structure.

Querying algorithms. We find that all metrics are lower for

the all-OR structure across querying algorithms. In general, both

Query-until-Confident variants have the lowest Total Failed
Attempts, except in the all-OR setting (where Execute-First

and Query-then-Execute outperform them). Thus, if the robot

policy architecture is not fully redundant, we recommend either

Query-until-Confident variant to maximize recovery efficiency.

6.3 Varying confidence values 𝑐𝑖
Module selectors.We find that all metrics (e.g. Task Cost, Fig. 4(a))
are higher across module selectors when confidences overlap. As

BruteForce, GraphQuery, and ConfidenceQuery are the most

competitive module selectors regardless of confidence level, we

recommend any of these module selectors.

Querying algorithms.We find that all metrics (e.g. Task Cost,
Fig. 4(a)) are higher across querying algorithms when confidences

overlap, except for Query-Until-Confident and Query-For-All.

We find that the Query-Until-Confident querying algorithm

is the most robust to confidence variations. We recommend any

querying algorithm if the confidence scores are well-separated

in the robot policy architecture, andQuery-Until-Confident if

confidence values are overlapping.

6.4 Varying query costs 𝑞𝑖
Module selectors. We find that all metrics except Task Cost
are invariant to 𝑞𝑖 , with BruteForce, GraphQuery, and

ConfidenceQuery having lower Total Timesteps (Fig. 4(a))

compared to the other module selectors. Regardless of the level of

user querying workload, we recommend either of these module

selectors.

Querying algorithms. We find that besides Query Cost, all
metrics are largely invariant to 𝑞𝑖 across querying algorithms.

As bothQuery-Until-Confident variants have the lowest Total
Failed Attempts and generally lower Total Timesteps (Fig. 4(a)), we
recommend either of these variants.

7 Synthetic Simulation: Module Heterogeneity

We now consider a simulation setting with an additional user

variable, query cost variance 𝛽 , allowing the query costs 𝑞𝑖 to

vary across modules. This models more realistic cost variation

across feedback types. We sample each 𝑞𝑖 uniformly around

a nominal value 𝑄 , i.e., 𝑞𝑖∼Uniform[(1−𝛽)𝑄, (1+𝛽)𝑄], with

𝑄=0.32 (the query cost value used when not varied in Sec. 6).

We compare the best performing module selectors from Sec. 6

A Human-in-the-Loop Confidence-Aware Failure Recovery Framework for Modular Robot Policies HRI ’26, March 16–19, 2026, Edinburgh, Scotland, UK

based on Task Cost: the query cost-aware method GraphQuery,

and the confidence-only baseline ConfidenceQuery (with

the Query-Until-Confident-Workload-Aware querying

algorithm).

We find that GraphQuery consistently outperforms

ConfidenceQuery in the Total Timesteps and Task Cost metrics,

especially when module confidences overlap or workload variance

is high (Task Cost in Fig. 4(b)). Under these conditions, upstream

modules with lower confidence and high workload may succeed,

whereas downstream modules with higher confidence but low

workload may fail. ConfidenceQuery incorrectly selects these

upstream modules first, whereas GraphQuery correctly selects

the downstream module (full results in Appendix G).

8 Robot-Assisted Bite Acquisition Experiments

Our real robot experiments use a robot-assisted bite acquisition

architecture with 𝑁 = 4 modules: food type identification (GPT-4o),

bounding box selection (GroundingDINO), skill selection (GPT-4o),

and skill parameter selection (RT-1). The first three modules

are VLMs, while the skill selection module is a VLA. Food type

identification and skill selection support learning from feedback

via retrieval-augmented generation (RAG) (architecture and RAG

details in Appendix C). We develop calibrated confidence scores for

each module using a population-based interval procedure (detailed

in Appendix C.1-C.2). We estimate module query costs using a

predictive workload model from prior work [3] (Appendix E).

To select a module selector and query algorithm for bite

acquisition, we adopt the recommendation from the closest

synthetic setting as follows. We use the 𝑁=10 setting to

approximate system scale; we model bite acquisition as

non-redundant (all-AND), since all modules must be correct

for success (Sec. 3); we use the confidence value setting (1, 0.1)
to match our binary calibrated module confidence scores

(Appendix C.2); we select 𝑞𝑖=0.32 to match the empirical

mean of workload model predictions; we assume 𝑐expert=1.0

as expert feedback is available for all modules. Based on these

conditions (Sec. 6), along with the query cost variance experiments

(Sec. 7), we use the GraphQuery module selector with the

Query-Until-Confident-Workload-Aware querying algorithm,

which performed best in Total Timesteps and Task Cost.3
User Studies. We conducted three IRB-approved studies to

evaluate algorithm task success and querying workload: two

in-lab studies, and one in-home study involving two individuals

with severe mobility limitations. All studies use a Kinova Gen3

6-DoF arm with a Robotiq 2F-85 gripper, and we replicate a

custom-designed feeding tool for the user studies [18]. A key

methodological feature of both of our in-lab studies, which supports

ecological validity, is the emulation of mobility constraints in

participants without pre-existing mobility impairments using

occupational therapy resistance bands [24] (Fig. 5 (left)).

For each method, the robot acquires 5 food items from a

plate, with a maximum of 3 acquisition attempts per item to

maintain a reasonable study duration. The robot may ask 4 types

of queries, corresponding to each module in the bite acquisition

system (Appendix C.4). The method and plate sequences are both

counterbalanced across the users in each study (Fig. 5 (middle, top)).

Metrics. We report 4 subjective metrics (Mental/Physical

Demand, Effort, Subjective Success, Satisfaction) and 3 objective

3
While GraphQuery and BruteForce were equally competitive, BruteForce

produced false-positive queries with our binary confidence scores. We chose

Query-until-Confident-Workload-Aware over Query-until-Confident for

better generalization to time-varying workload.

metrics (Mean Queries/Executions/Successful Bites Per Plate),

detailed in Appendix H.

8.1 In-lab real-robot user study

We first conducted an in-lab study with 10 participants

without mobility limitations (7 male, 3 female; ages 19–33;

40% with prior robot experience) (Fig. 5 (right)). We

compared our method (GraphQuery module selector and

Query-Until-Confident-Workload-Aware querying algorithm)

against two additional baselines:Never Query (NeverQuerymodule

selector and Query-then-Execute querying algorithm) and

Always Query (TopoQuery module selector andQuery-For-All

querying algorithm). The study evaluated whether our method (1)

improved task success over Never Query and (2) reduced querying

workload over Always Query. Participants interacted with two

plates: a "savory salad" (chicken, lettuce, cherry tomatoes) and a

"Thanksgiving meal" (chicken, green beans, mashed potatoes).

As shown in Fig. 6(a–b), our method achieved the highest user

satisfaction, significantly lower mental/physical workload than

Always Query, and higher subjective success than Never Query
(Wilcoxon signed-rank test, 𝛼 = 0.05). Our method is more efficient

than Always Query, with higher task success than Never Query.
8.2 In-lab real-robot user study with module

heterogeneity

To distinguish our method from ConfidenceQuery, we introduced

module heterogeneity into our bite acquisition setting by

incorporating a faulty food detector 𝑀1 (Appendix D), similar

to our second simulation study (Sec. 7). We conducted a second

in-lab study with 10 additional participants (3 male, 6 female, 1

non-binary; ages 20-30; 30% with prior robot experience) using

the "savory salad" plate (Fig. 5 (right)). We sought to determine

whether our method improved task success and querying workload

compared to the Confidence Query baseline (ConfidenceQuery

module selector andQuery-Until-Confident-Workload-Aware

querying algorithm).

We found that our method produced significantly higher

task performance, lower workload, and higher satisfaction than

Confidence Query (Wilcoxon test, 𝛼 = 0.05; Fig. 5(c-d)), reinforcing

the value of principled uncertainty and workload integration.

8.3 In-home real-robot user study

We conducted an in-home user study on 2 individuals with mobility

limitations who require feeding assistance (Fig. 5 (middle, bottom)).

One is a female, 48 years old, who has had Multiple Sclerosis for 17

years, and the other is a male, 47 years old, who has been paralyzed

with a C4-C6 spinal cord injury for 27 years. Based on the in-lab

study results (Secs. 8.1, 8.2), we compared ourmethod toNeverQuery
and AlwaysQuery. We evaluated the methods on a "mixed salad"

plate with additional food item diversity (watermelons, cantaloupes,

honeydew, green beans).

We find that the mental/physical demand and effort of our

method are lower compared to Always Query, and that users rated

ourmethod asmore successful compared toNever Query (Fig. 6(e-f)).
In general, our method achieves the best user satisfaction score.

Both users expressed that they liked the system, as their

satisfaction scores were higher for our method compared to both

baselines. One user’s absolute satisfaction level was reduced due to

the need for physical interaction with the interface. They noted that

a more accessible option, such as voice control, would significantly

improve their experience. They commented that because they use

a tablet interface in everyday interactions, answering a few more

HRI ’26, March 16–19, 2026, Edinburgh, Scotland, UK Rohan Banerjee et al.

Figure 5: Experimental setup. (left) Robot and user study setup; (middle, top) Meal plates used in user studies, including

"Thanksgiving meal", "savory salad", and "mixed salad"; (middle, bottom) Users with mobility limitations from in-home user

study; (right) Users with emulated mobility limitations from two in-lab user studies.

In-home Real-robot
User Study Results

In-lab Real-robot
User Study Results(a)

(b) (d)

Su
bj

ec
tiv

e
M

et
ric

s S
co

re
s

Mental/Physical
Demand

Effort Subjective
Success

Satisfaction

O
bj

ec
tiv

e
M

et
ric

s S
co

re
s

Mean Queries
Per Bite

Mean Executions
 Per Bite

Mean Successful
Bites Per Trial

O
bj

ec
tiv

e
M

et
ric

s S
co

re
s

(c)

Mean Queries
Per Bite

Mean Executions
 Per Bite

Mean Successful
Bites Per Trial

Su
bj

ec
tiv

e
M

et
ric

s S
co

re
s

Mental/Physical
Demand

Effort Subjective
Success

SatisfactionSu
bj

ec
tiv

e
M

et
ric

s S
co

re
s

Mental/Physical
Demand

Effort Subjective
Success

Satisfaction
O

bj
ec

tiv
e

M
et

ric
s S

co
re

s

Mean Queries
Per Bite

Mean Executions
 Per Bite

Mean Successful
Bites Per Trial

(f)

(e)

In-lab Real-robot User Study
with Module Heterogeneity Results

* * * *

*

*
*

*
*

*

* * *

*
*

*
*

Figure 6: User study metrics. In-lab real-robot study: (a) subjective scores, (b) objective scores; In-lab real-robot study with

module heterogeneity: (c) subjective scores, (d) objective scores; In-home real-robot study: (e) subjective scores, (f) objective

scores (∗ indicates statistical significance p < 0.05.).

queries on the tablet in the study did not require significantly extra

effort for the study duration. However, they still rated AlwaysQuery
as having higher effort than our method. The other user mentioned

that the time required for the robot to execute actions (higher

when the robot failed more frequently) was an additional source of

frustration that increased overall workload.

9 Discussion

Our framework readily extends to other modular robot systems,

which we illustrate by considering two additional domains: a

feeding architecture with visuo-haptic perceptual redundancy [40],

and a large multi-robot swarm system [34]. The feeding system

maps naturally to an OR-then-AND redundancy structure (due

to the perceptual redundancy) with low query cost (𝑞𝑖 = 0.16),

yielding the same recommendation as our primary setting (Fig. 4).

We can model the swarm domain with 𝑁 = 100 to capture its scale

and an OR redundancy structure, leading to the ConfidenceQuery

module selector for its superior scalability (Fig. 4, first column), and

either Query-until-Confident querying algorithm variant. Both

resulting recommendations align with domain intuition.

A key challenge in applying our framework to bite acquisition

was developing well-calibrated confidence scores for each module.

This involved adapting RT-1 to produce novel confidence

scores, and developing a common calibration procedure for

all modules that could operate under their varying empirical

confidence distributions (Appendix C.1-C.2). While our confidence

estimates were reasonably calibrated, future work could explore

conformal prediction [27, 33] or data-driven calibration methods

[20]. Future work could also consider module selectors that

handle more complex redundancy structures. While we studied

graph-based module selectors for product-of-confidences and

sum-of-uncertainties objectives, a hybrid selector could adaptively

combine these structures based on which modules are redundant.

Finally, longer-term interactions with end users may further

differentiate human-in-the-loop algorithms, beyond our observed

satisfaction trends. Future evaluations could also consider more

diverse in-the-wild dishes with richer food sets, more complex

geometries, and pre-manipulation skills [15, 18, 40].

A Human-in-the-Loop Confidence-Aware Failure Recovery Framework for Modular Robot Policies HRI ’26, March 16–19, 2026, Edinburgh, Scotland, UK

References

[1] Christopher Agia, Rohan Sinha, Jingyun Yang, Ziang Cao, Rika Antonova, Marco

Pavone, and Jeannette Bohg. 2025. Unpacking Failure Modes of Generative

Policies: Runtime Monitoring of Consistency and Progress. In Conference on
Robot Learning. PMLR, 689–723.

[2] Faseeh Ahmad, Matthias Mayr, Sulthan Suresh-Fazeela, and Volker Krueger.

2024. Adaptable Recovery Behaviors in Robotics: A Behavior Trees and

Motion Generators (BTMG) Approach for Failure Management. arXiv preprint
arXiv:2404.06129 (2024).

[3] Rohan Banerjee, Rajat Kumar Jenamani, Sidharth Vasudev, Amal Nanavati,

Sarah Dean, and Tapomayukh Bhattacharjee. 2024. To Ask or Not To Ask:

Human-in-the-loop Contextual Bandits with Applications in Robot-Assisted

Feeding. arXiv preprint arXiv:2405.06908 (2024).
[4] Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João

Dionísio, Tim Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed

Ghannam, Ambros Gleixner, et al. 2024. The SCIP optimization suite 9.0. arXiv
preprint arXiv:2402.17702 (2024).

[5] Maya Cakmak and Andrea L Thomaz. 2012. Designing robot learners that ask

good questions. In Proceedings of the seventh annual ACM/IEEE international
conference on Human-Robot Interaction. 17–24.

[6] Michele Colledanchise and Petter Ögren. 2018. Behavior trees in robotics and AI:
An introduction. CRC Press.

[7] Cristina Cornelio and Mohammed Diab. 2024. Recover: A Neuro-Symbolic

Framework for Failure Detection and Recovery. arXiv preprint arXiv:2404.00756
(2024).

[8] Jiafei Duan, Wilbert Pumacay, Nishanth Kumar, Yi RuWang, Shulin Tian, Wentao

Yuan, Ranjay Krishna, Dieter Fox, Ajay Mandlekar, and Yijie Guo. 2024. Aha:

A vision-language-model for detecting and reasoning over failures in robotic

manipulation. arXiv preprint arXiv:2410.00371 (2024).
[9] Ryan Feng, Youngsun Kim, Gilwoo Lee, Ethan Gordon, Matthew Schmittle,

Shivaum Kumar, Tapomayukh Bhattacharjee, and Siddhartha Srinivasa. 2019.

Robot-Assisted Feeding: Generalizing Skewering Strategies across Food Items on

a Realistic Plate. (06 2019). doi:10.48550/arXiv.1906.02350

[10] Tesca Fitzgerald, Pallavi Koppol, Patrick Callaghan, Russell Quinlan Jun Hei

Wong, Reid Simmons, Oliver Kroemer, and Henny Admoni. 2022. INQUIRE:

INteractive querying for user-aware informative REasoning. In 6th Annual
Conference on Robot Learning.

[11] Lex Fridman, Bryan Reimer, Bruce Mehler, and William T Freeman. 2018.

Cognitive load estimation in the wild. In Proceedings of the 2018 chi conference on
human factors in computing systems. 1–9.

[12] Émiland Garrabé, Pierre Teixeira, Mahdi Khoramshahi, and Stéphane Doncieux.

2024. Enhancing Robustness in Language-Driven Robotics: A Modular Approach

to Failure Reduction. arXiv preprint arXiv:2411.05474 (2024).
[13] Ethan K Gordon, Xiang Meng, Tapomayukh Bhattacharjee, Matt Barnes, and

Siddhartha S Srinivasa. 2020. Adaptive robot-assisted feeding: An online

learning framework for acquiring previously unseen food items. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,
9659–9666.

[14] Ethan K Gordon, Sumegh Roychowdhury, Tapomayukh Bhattacharjee, Kevin

Jamieson, and Siddhartha S Srinivasa. 2021. Leveraging post hoc context for

faster learning in bandit settings with applications in robot-assisted feeding.

In 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
10528–10535.

[15] Nayoung Ha, Ruolin Ye, Ziang Liu, Shubhangi Sinha, and Tapomayukh

Bhattacharjee. 2024. REPeat: A Real2Sim2Real Approach for Pre-acquisition

of Soft Food Items in Robot-assisted Feeding. In 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 7048–7055.

[16] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX

(Task Load Index): Results of empirical and theoretical research. In Advances in
psychology. Vol. 52. Elsevier, 139–183.

[17] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh,

Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. 2024.

Gpt-4o system card. arXiv preprint arXiv:2410.21276 (2024).
[18] Rajat Kumar Jenamani, Priya Sundaresan, Maram Sakr, Tapomayukh

Bhattacharjee, and Dorsa Sadigh. 2024. FLAIR: Feeding via Long-horizon

AcquIsition of Realistic dishes. arXiv preprint arXiv:2407.07561 (2024).
[19] Ulas Berk Karli, Tetsu Kurumisawa, and Tesca Fitzgerald. [n. d.]. Ask Before

You Act: Token-Level Uncertainty for Intervention in Vision-Language-Action

Models. In Second Workshop on Out-of-Distribution Generalization in Robotics at
RSS 2025.

[20] Ulas Berk Karli, Ziyao Shangguan, and Tesca FItzgerald. 2025. INSIGHT:

INference-time Sequence Introspection for Generating Help Triggers in

Vision-Language-Action Models. arXiv preprint arXiv:2510.01389 (2025).

[21] Ross A Knepper, Stefanie Tellex, Adrian Li, Nicholas Roy, and Daniela Rus. 2015.

Recovering from failure by asking for help. Autonomous Robots 39 (2015), 347–362.
[22] Ali Larian, Atharv Belsare, Zifan Wu, and Daniel S Brown. 2025. Learner and

Teacher Perspectives on Learning Rewards from Multiple Types of Human

Feedback. RSS 2025 Workshop Human-in-the-Loop Robot Learning: Teaching,
Correcting, and Adapting (2025).

[23] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan

Li, Jianwei Yang, Hang Su, Jun Zhu, and Lei Zhang. 2023. Grounding DINO:

Marrying DINO with Grounded Pre-Training for Open-Set Object Detection.

arXiv preprint arXiv:2303.05499 (2023).
[24] Ziang Liu, Yuanchen Ju, Yu Da, Tom Silver, Pranav N Thakkar, Jenna Li, Justin

Guo, Katherine Dimitropoulou, and Tapomayukh Bhattacharjee. 2025. GRACE:

Generalizing Robot-Assisted Caregiving with User Functionality Embeddings. In

2025 20th ACM/IEEE International Conference on Human-Robot Interaction (HRI).
IEEE, 686–695.

[25] Xiao Ma, Sumit Patidar, Iain Haughton, and Stephen James. 2024. Hierarchical

Diffusion Policy for Kinematics-Aware Multi-Task Robotic Manipulation. CVPR
(2024).

[26] Matthias Mayr, Faseeh Ahmad, Konstantinos Chatzilygeroudis, Luigi Nardi, and

Volker Krueger. 2022. Skill-based multi-objective reinforcement learning of

industrial robot tasks with planning and knowledge integration. In 2022 IEEE
International Conference on Robotics and Biomimetics (ROBIO). IEEE, 1995–2002.

[27] James F Mullen Jr and Dinesh Manocha. 2024. Towards Robots That Know

When They Need Help: Affordance-Based Uncertainty for Large Language Model

Planners. arXiv preprint arXiv:2403.13198 (2024).
[28] Krishna Palempalli, Rohan Banerjee, Sarah Dean, and Tapomayukh Bhattacharjee.

2025. Human-in-the-loop Foundation Model Failure Recovery for Robot-Assisted

Bite Acquisition. In 1stWorkshop on Safely Leveraging Vision-Language Foundation
Models in Robotics: Challenges and Opportunities. https://openreview.net/forum?

id=I7UG7eC11i

[29] Tianyang Pan, Andrew M Wells, Rahul Shome, and Lydia E Kavraki. 2022.

Failure is an option: task and motion planning with failing executions. In 2022
International Conference on Robotics and Automation (ICRA). IEEE, 1947–1953.

[30] Rafael Papallas and Mehmet R Dogar. 2022. To ask for help or not to

ask: A predictive approach to human-in-the-loop motion planning for robot

manipulation tasks. In 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 649–656.

[31] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models

From Natural Language Supervision. arXiv:2103.00020 [cs.CV] https://arxiv.org/

abs/2103.00020

[32] Akilesh Rajavenkatanarayanan, Harish Ram Nambiappan, Maria Kyrarini, and

Fillia Makedon. 2020. Towards a real-time cognitive load assessment system for

industrial human-robot cooperation. In 2020 29th IEEE International Conference
on Robot and Human Interactive Communication (RO-MAN). IEEE, 698–705.

[33] Allen Z Ren, Anushri Dixit, Alexandra Bodrova, Sumeet Singh, Stephen Tu, Noah

Brown, Peng Xu, Leila Takayama, Fei Xia, Jake Varley, et al. 2023. Robots that

ask for help: Uncertainty alignment for large language model planners. arXiv
preprint arXiv:2307.01928 (2023).

[34] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. 2014.

Programmable self-assembly in a thousand-robot swarm. Science 345,

6198 (2014), 795–799.

[35] Lucy Xiaoyang Shi, Zheyuan Hu, Tony Z Zhao, Archit Sharma, Karl Pertsch,

Jianlan Luo, Sergey Levine, and Chelsea Finn. 2024. Yell at your robot: Improving

on-the-fly from language corrections. arXiv preprint arXiv:2403.12910 (2024).
[36] Joshua Bhagat Smith, Prakash Baskaran, and Julie A Adams. 2022. Decomposed

physical workload estimation for human-robot teams. In 2022 IEEE 3rd
International Conference on Human-Machine Systems (ICHMS). IEEE, 1–6.

[37] Priya Sundaresan, Suneel Belkhale, andDorsa Sadigh. 2022. Learning visuo-haptic

skewering strategies for robot-assisted feeding. In 6th Annual Conference on Robot
Learning.

[38] Stefanie Tellex, Ross Knepper, Adrian Li, Daniela Rus, and Nicholas Roy. 2014.

Asking for help using inverse semantics. (2014).

[39] Shivam Vats, Michelle Zhao, Patrick Callaghan, Mingxi Jia, Maxim Likhachev,

Oliver Kroemer, and George Konidaris. 2025. Optimal Interactive Learning on

the Job via Facility Location Planning. arXiv preprint arXiv:2505.00490 (2025).
[40] Zhanxin Wu, Bo Ai, Tom Silver, and Tapomayukh Bhattacharjee. 2025. SAVOR:

Skill Affordance Learning from Visuo-Haptic Perception for Robot-Assisted Bite

Acquisition. arXiv preprint arXiv:2506.02353 (2025).
[41] Chen Xu, Tony Khuong Nguyen, Emma Dixon, Christopher Rodriguez, Patrick

Miller, Robert Lee, Paarth Shah, Rares Ambrus, Haruki Nishimura, and Masha

Itkina. 2025. Can we detect failures without failure data? uncertainty-aware

runtime failure detection for imitation learning policies. arXiv preprint
arXiv:2503.08558 (2025).

https://doi.org/10.48550/arXiv.1906.02350
https://openreview.net/forum?id=I7UG7eC11i
https://openreview.net/forum?id=I7UG7eC11i
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020

HRI ’26, March 16–19, 2026, Edinburgh, Scotland, UK Rohan Banerjee et al.

A Proxy Objectives

Justification for proxy objective 1: the second term can be a

reasonable approximation for 1 − E[𝑟
task

], where the expectation
is over model uncertainties (represented by 𝑐𝑖):

E[𝑟
task

] = 𝑃 (∩𝑖𝑀𝑖 succeeds)

=
∏
𝑀𝑖

𝑃 (𝑀𝑖 correct|predecessor𝑀𝑗 correct)

=
∏

𝑀𝑖∉𝑀𝑞

𝑐𝑖

Justification for proxy objective 2: Let 𝑢𝑖 = 1 − 𝑐𝑖 be the

uncertainty of module 𝑖 . Then we can use union bound to show

that:

𝑃 (system fail) = 𝑃 (∪𝑖𝑀𝑖 fails)

≤
∑︁
𝑖

𝑃 (𝑀𝑖 fails)

=
∑︁

𝑀𝑖∉𝑀𝑞

𝑢𝑖 +
∑︁

𝑀𝑖 ∈𝑀𝑞

0

=
∑︁

𝑀𝑖∉𝑀𝑞

𝑢𝑖

Thus, the proxy objective 2 task component is an upper bound

in 𝑃 (system fail) = 1 − E[𝑟
task

], meaning that proxy objective 2 is

a loose upper bound on the original objective, so minimizing proxy

objective 2, could also minimize the original objective.

B Algorithm Performance Analysis

Suppose that we have a module graph 𝐺𝑀 where we have exactly

one module in failure (denoted 𝑀𝑓), with all other modules in

success. Additionally, we assume that the cost of querying 𝑞𝑖 = 0.1

for all modules. The module in failure has confidence 𝑐 𝑓 = 0.1, and

all other modules have confidence 𝑐𝑖 = 0.1.

B.1 GraphQuery

Recall that in GraphQuery, we assign edge costs 𝐶 (𝑒) = 1 − 𝑐𝑖
for the autonomous edges. The graph algorithm thus queries for a

module if 1 − 𝑐𝑖 > 𝜖𝑞; or:

𝑞 < (1 − 𝑐𝑖)/𝜖 (5)

We will never query for any of the modules in success because

𝑐𝑖 = 1 for these modules (as 1 − 𝑐𝑖 will always be 0, and we assume

that 𝑞 is nonnegative, so condition 5 can never be met), so we don’t

have to worry about querying for modules that are upstream of

𝑀𝑓 .

In our scenario, we will query for 𝑀𝑓 since 𝑞 = 0.1; and (1 −
𝑐𝑖)/𝜖 = (1− 0.1) = 0.9; thus condition 5 is met. Thus, GraphQuery

will query correctly at the first timestep.

For fixed 𝑞 = 0.1, the critical value of 𝜖 above which we would

cease to query is 𝜖𝑐𝑟𝑖𝑡 = (1 − 𝑐𝑖)/(𝑞) = (1 − 0.1)/(0.1) = 9 .

For fixed 𝜖 = 1, the critical value of 𝑞 above which we would

cease to query is 𝑞𝑐𝑟𝑖𝑡 = (1 − 𝑐𝑖)/(𝜖) = 0.9

B.2 MIP

Recall that we approximate the expected task reward E[𝑟
task

] as
follows:

E[𝑟𝑡𝑎𝑠𝑘] =
∏
𝑀𝑖

𝑃 (𝑀𝑖 correct) =
∏
𝑀𝑖

𝑐𝑖

If we decide to query for a particular module 𝑖 , we assume that

𝑐𝑖 = 1 since we’re using the expert feedback.

• Hypothetical 𝐽 (𝜓𝑚𝑠 ,𝜓𝑞) of not querying for any module:

1 − (1𝑁−1 · 0.1) = 0.9

• Hypothetical 𝐽 (𝜓𝑚𝑠 ,𝜓𝑞) of querying for any of the

non-failure modules: 𝑞 +1− (1𝑁−2 · 0.1 · 1) = 𝑞 +0.9 = 𝑞 +0.9
• Hypothetical cost of querying for the failure module: 𝑞 + 1−
(1𝑁−1 · 1) = 𝑞

Thus, we should choose to query for the failure module as long

as 𝑞 < 0.9, so in our scenario, MIP will always choose to query for

the module in failure at the first timestep.

C Bite Acquisition Architecture

Fig. 2 (left) shows the modular bite acquisition architecture that

we use in our work, which is an adaptation of a state-of-the-art

architecture [18], including novel foundation model components.

This autonomous system consists of four submodules, each with

an associated confidence estimate:

• M1: GPT-4o [17] food type detector that processes a whole

plate RGB image 𝑧RGB ∈ R𝐻×𝑊 ×3
and identifies a candidate

set of food labels L = {𝑙1, 𝑙2, . . . , 𝑙𝐾 }, where 𝐾 is the number

of unique food categories detected (e.g., cherry tomatoes,

pineapple, etc.). From this set, 𝑀1 selects the single label

with the highest confidence score as its output:

𝑀1 (𝑧RGB) → 𝑙∗

• M2: GroundingDINO [23] bounding box detector that takes

as input the selected food type label 𝑙∗ from𝑀1 together with

the plate RGB image 𝑧RGB. It outputs one or more bounding

boxes B(𝑙∗) = {𝑏1, 𝑏2, . . . , 𝑏 𝐽 }, where each 𝑏 𝑗 corresponds
to a detected instance of the food type 𝑙∗ in the image. Thus,

𝑀2 (𝑧RGB, 𝑙∗) → B(𝑙∗) .
• M3: GPT-4o [17] skill selector that, given a detected food

label 𝑙∗ and its corresponding bounding box 𝑏𝑖 , predicts

the optimal skill 𝑎ℎ
𝑖
∈ Aℎ , where Aℎ is a set of skills (e.g.

Skewering, Scooping, Twirling).

𝑀3 (𝑙∗, 𝑏𝑖) → 𝑎ℎ𝑖

• M4: A VLA model RT-1 that refines the skill action 𝑎ℎ
𝑖
into

precise skill parameters 𝑎𝑙
𝑖
∈ R4. It takes in the skill action

𝑎ℎ
𝑖
and the cropped image from the corresponding bounding

box 𝑏𝑖 . We adapt RT-1 for modular control by fine-tuning

it with a new regression projection head on an aggregated

dataset consisting of SPANet samples [9], along with ∼1,000
additional labeled images that we collected. This design

enables us to attribute RT-1’s uncertainty purely to its

skill-parameter prediction, while 𝑀1, 𝑀2, and 𝑀3 handle

food classification, location estimation, and skill selection.

Skill-specific parameterization. We represent all

low-level skills using a unified 2D action vector

𝑎𝑙
𝑖

= (𝑥1, 𝑦1, 𝑥2, 𝑦2), with its semantics based on the

selected skill 𝑎ℎ
𝑖
. For skewering and twirling, the interaction

A Human-in-the-Loop Confidence-Aware Failure Recovery Framework for Modular Robot Policies HRI ’26, March 16–19, 2026, Edinburgh, Scotland, UK

point is defined as the midpoint between the two predicted

points,

(𝑥𝑐 , 𝑦𝑐) =
(𝑥1 + 𝑥2

2

,
𝑦1 + 𝑦2

2

)
,

and the fork tine direction 𝜃 computed as follows:

𝜃 = arctan(𝑦2 − 𝑦1, 𝑥2 − 𝑥1) .
For scooping, (𝑥1, 𝑦1) denotes the start of the scooping

motion and (𝑥2, 𝑦2) denotes the end of the scooping

trajectory. This parameterization follows prior work

on vision-conditioned manipulation primitives (e.g.,

FLAIR [18]), while enabling a unified continuous action

space across heterogeneous skills.

𝑀4 (𝑎ℎ𝑖 , 𝑏𝑖) → 𝑎𝑙𝑖

C.1 Calibration Datasets and Confidence

Intervals

To support uncertainty-aware decision-making in our

bite-acquisition pipeline, we adapt the work mentioned in

[28]. We construct calibration datasets and associated confidence

intervals for all modules:𝑀1,𝑀2,𝑀3,𝑀4. Each calibration dataset

records per-instance model outputs, their confidence scores, and

the corresponding ground-truth labels.

Calibration for 𝑀1. We use dishes and all the available plate

images from [18]. For each food type in an image, 𝑀1 generates

a ranked list of candidate tokens (labels) with log probabilities.

These are exponentiated, scaled to percentages, and rounded to two

decimal places to yield confidence scores, and the top token (token

with the highest confidence score) is selected as the predicted label

for that food type.

• If the top token matches the ground-truth label for the

food type, we add an entry containing the top-5 tokens,

their confidence scores, and the ground-truth label to𝑀1’s

calibration dataset.

• If the ground-truth label is not among the predictions, we

substitute a label: either an unmatched food type prediction

(if available) or, as a fallback, a matched one from the same

image. The substituted token and its associated scores are

stored alongside the ground-truth label.

This substitution procedure ensures that every target food

type contributes an entry to the calibration dataset, which is

necessary for computing reasonable reference intervals. This yields

a confidence-based calibration dataset for𝑀1 with 96 samples.

Calibration for𝑀2. For the same set of images used in𝑀1, we

iterate over all bounding boxes generated by 𝑀2. Each bounding

box is manually assessed to determine whether it is successful
(accurately capturing a target food type) or unsuccessful (e.g.,
enclosing thewrong food type, empty regions, or background noise).

For each bounding box, we record the confidence score produced

by GroundingDINO. If the bounding box is deemed successful,

its confidence score is added to the success list; if unsuccessful, its

confidence score is added to the failure list. In this setup, the success

scores play the role of the “top-choice” confidence values, while

the failure scores serve as the counterpart to the “second-choice”

values used in 𝑀1 and 𝑀3. This yields a calibration dataset of

76 samples for 𝑀2 consisting of success (61 samples) and failure

(15 samples) confidence distributions that are used to construct

intervals analogous to those for the other modules.

Calibration for𝑀3. The identified (or substituted) label from

𝑀1, together with the corresponding bounding box image from𝑀2

of that food type, is passed to 𝑀3. To ensure reliable inputs, we

restrict this step to bounding boxes deemed valid—those accurately

capturing the food type without just empty regions and such. This

module outputs candidate skill tokens and their log probabilities,

which are processed into percentage confidence scores using the

same procedure as𝑀1. Similar to the procedure in𝑀1, the top token

is taken as the predicted skill. For each food type and bounding

box image pair, we store the top 3 tokens, their confidence scores,

and the ground-truth skill label in the calibration dataset for 𝑀3.

This yields a confidence-based calibration dataset for𝑀3, with 66

samples, analogous to that of𝑀1.

Calibration for𝑀4. Since RT-1 is deterministic, we introduce

stochasticity into its predictions using Monte Carlo Dropout.

Specifically, we enable dropout during inference and run the model

in batches of 16 forward passes. This produces a distribution over

the 𝑀4 output space, from which we compute the variance. The

variance then serves as our measure of the model’s confidence in its

prediction. We used the same bounding boxes as we used in𝑀3, but

with the human annotated ground truth label for skills. This yields

a confidence-based calibration dataset for𝑀4 with 66 samples.

Confidence Intervals. From each calibration dataset, we

compute themean (𝜇∗) and standard deviation (𝜎∗) of the top tokens’
confidence scores.We do the same for the second top tokens, and get

𝜇+ and 𝜎+. Using these values, we define the following confidence

intervals:

𝐼
TopConf

= [𝜇∗−𝜎∗, 𝜇∗+𝜎∗], 𝐼
SecondTopConf

= [𝜇+−𝜎+, 𝜇++𝜎+] .
These intervals capture the expected distribution of confidence

scores for top and second-ranked predictions across all calibration

instances.

C.2 Calibrated Confidence Scores

To obtain calibrated confidence scores for all the modules, we apply

a rule that maps raw confidence values into a stable binary value.

For a given confidence score 𝑐∗ (corresponding to the top prediction
for an instance), we check whether 𝑐∗ falls outside the calibrated
top-token interval or within the second-token interval:

𝐶𝑜𝑛𝑓𝑐𝑎𝑙 (𝑐∗) =
{
0, if (𝑐∗ ∉ 𝐼

TopConf
) ∨ (𝑐∗ ∈ 𝐼

SecondTopConf
),

1, otherwise.

Here, the function 𝐶𝑜𝑛𝑓𝑐𝑎𝑙 (𝑐∗) produces a binary calibrated

confidence score: 0 when the prediction is considered

low-confidence (uncertain), and 1 when the prediction is considered

high-confidence (confident). These calibrated scores are later

consumed by other components of the pipeline that determine

whether or not to query the human for that particular module.

Grounding the decision in confidence intervals estimated from

calibration data allows the system to identify both underconfident

correct predictions and overconfident incorrect predictions,

producing a more stable confidence signal than raw probabilities

alone. By introducing calibrated confidence scores, we ensure

that the system reasons over interpretable, statistically grounded

intervals rather than noisy probability values, providing more

reliable and consistent confidence estimates across all the modules.

C.3 Retrieval-Augmented Feedback for Error

Recovery

To enable the system to recover from past errors and adapt over time,

we integrate a retrieval-augmented generation (RAG) component

into both the food type identification module (𝑀1) and the skill

selection module (𝑀3). The goal of this component is to incorporate

HRI ’26, March 16–19, 2026, Edinburgh, Scotland, UK Rohan Banerjee et al.

human-provided feedback into a persistent store, allowing the

pipeline to retrieve and reuse corrections when similar inputs are

encountered in the future. This mechanism provides a means of

continual learning from mistakes and reduces repeated queries to

the human user.

Embedded Feedback Store. We implement an

EmbeddedFeedbackStore that records feedback entries consisting

of the plate image (for𝑚1) or bounding box image and food label

(for𝑚3), together with the corrected output provided by the human.

For𝑚1, embeddings are computed directly from the plate image

using the CLIP vision encoder [31], resulting in a purely visual

representation. For 𝑚3, embeddings are computed jointly from

the bounding box image of the target food item and its textual

label using the CLIP vision–language model [31], capturing both

visual and semantic context for skill selection. All embeddings

are normalized and stored persistently as vectors alongside the

corresponding ground-truth correction, which in our setup refers

to the a correct food type label for 𝑀1 and the correct skill for

𝑀3. So whenever the system queries the human for feedback for a

particular module, the corresponding input (image or bounding

box image with label) together with its corrected output is added

to the feedback store for future retrieval and reuse.

Retrieval. At inference time, when 𝑀1 or 𝑀3 produces a

prediction, the feedback store computes the CLIP embedding for

the current input and retrieves the most similar past entry using

cosine similarity. If the best match exceeds a similarity threshold,

the stored correction is reused. This correction is converted into

a probability distribution: the retrieved food type label (or skill) is

assigned a probability proportional to the similarity score, and the

remaining probability mass is evenly distributed across the other

candidate tokens. If no sufficiently similar correction is found, the

pipeline defaults to the module’s prediction.

This RAG-based mechanism allows the pipeline to learn

incrementally from its mistakes. By leveraging similarity search,

the system avoids repeating prior errors on similar inputs and

reduces unnecessary human queries. This provides a lightweight

but effective form of continual adaptation.

C.4 Query questions and feedback in user study

Four types of questions can be asked when executing the Always
Query method and our selected method in the user study:

(1) The robot will ask the user for help by asking the following

question: “Could you tell me a food item that is on the plate?”

Users can respond by providing any valid food item that is

present on the plate.

(2) The robot will ask the user for help by displaying the plate

image on the tablet. Users can respond by tapping 2 opposite

corners of the box on the screen to create a bounding box.

(3) The robot will ask the user for help by asking you the

following question: “For the food item on the plate, what

skill should I use?”. Users can respond by telling the robot

the skill that it should use.

(4) The robot will ask the user for help by displaying the

bounding box image on the tablet. Users can respond by

tapping 2 points in the following manner: for skewering, tap

two points that define the longer edge of the food item; for

scooping, tap the start and the end of the scoop; for twirling,

tap two points around where the user thinks the fork should

twirl the food item.

D Bite Acquisition Architecture with Module

Heterogeneity

This architecture is similar to that described in Sec. C, with the

following modifications:

• M1: The food detector is faulty, producing a random food

label with probability 0.9 (which lies outside of the set of food

items encountered in the "savory salad" and "Thanksgiving

meal" plates). In this scenario, the food detector assigns

a confidence of 𝑐1 = 0.65. In the event of a success, 𝑀1

produces the label with the highest confidence score ℓ∗ as
before, but with a confidence score 𝑐1 =

𝑐∗
𝑐𝑚𝑎𝑥,𝑀

1

, where 𝑐∗ is

the raw confidence score (Sec. C.2) and 𝑐𝑚𝑎𝑥 is the maximum

raw confidence score observed in the𝑀1 calibration set.

• M2: Similar to Sec. C, but with a confidence score 𝑐2 =
𝑐∗
𝑐𝑚𝑎𝑥

,

where 𝑐∗ is the raw confidence score (Sec. C.2) and 𝑐𝑚𝑎𝑥,𝑀2

is the maximum raw confidence score observed in the 𝑀2

calibration set.

• M3: Similar to Sec. C, but with a confidence score 𝑐3 =
𝑐∗
𝑐𝑚𝑎𝑥

,

where 𝑐∗ is the raw confidence score (Sec. C.2) and 𝑐𝑚𝑎𝑥,𝑀3

is the maximum raw confidence score observed in the 𝑀3

calibration set.

• M4: Unchanged compared to Sec. C.

E Workload Model Conditioning

To predict workload for each of the bite acquisition modules

(Appendix C), we set the query type variables for the predictive

workload model as follows [3]:

• 𝑀1: 𝑑𝑡 = easy, 𝑟𝑒𝑠𝑝𝑡 = MCQ, 𝑑𝑖𝑠𝑡𝑡 = “no distraction task”

• 𝑀2: 𝑑𝑡 = easy, 𝑟𝑒𝑠𝑝𝑡 = BB, 𝑑𝑖𝑠𝑡𝑡 = “no distraction task”

• 𝑀3: 𝑑𝑡 = easy, 𝑟𝑒𝑠𝑝𝑡 = MCQ, 𝑑𝑖𝑠𝑡𝑡 = “no distraction task”

• 𝑀4: 𝑑𝑡 = hard, 𝑟𝑒𝑠𝑝𝑡 = BB, 𝑑𝑖𝑠𝑡𝑡 = “no distraction task”

F Additional Synthetic Experiments: Systematic

Ablations

F.1 Additional experimental setup details.

We set the GraphQuery hyperparameter 𝜖 = 1, and we assume

equal weight between querying and task reward (𝑤 = 0.5).

Independent variable settings considered:

• Number of modules 𝑁 : [3, 5, 10, 15, 18, 25, 50, 75, 100]

• Graph redundancy structure 𝐺𝑀 : [fully redundant (all-OR),

fully dependent (all-AND), fully redundant followed by fully

dependent (OR-then-AND), fully dependent followed by fully

redundant (AND-then-OR)]

• Module confidences 𝑐𝑖 : [(1.0, 0.1), (0.9, 0.2), (0.8, 0.3), (0.7,

0.4)], where (𝑐ℎ ,𝑐𝑙) are the high confidence value and low

confidence value, respectively, described in Sec. 6.We assume

that 3 of the modules in the module graph 𝐺𝑀 are assigned

the low confidence value, and the rest are assigned the high

confidence value.

• Query costs 𝑞𝑖 : [0.08, 0.16, 0.32, 0.64]

Below, we vary each independent variable in isolation, fixing the

other variables to the setting described in Sec. 6.

F.2 Number of modules 𝑁

Full results for varying the number of modules 𝑁 across module

selectors and querying algorithms are shown in Fig. 7. Key

takeaways:

• No metrics (besides Computation Time) vary as a function

of number of modules, except in different variable settings

A Human-in-the-Loop Confidence-Aware Failure Recovery Framework for Modular Robot Policies HRI ’26, March 16–19, 2026, Edinburgh, Scotland, UK

0 25 50 75 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Q
ue

ry
 C

os
t

0 25 50 75 100
0

25

50

75

100

125

150

175

200

To
ta

l F
ai

le
d

At
te

m
pt

s
0 25 50 75 100

0.00

0.02

0.04

0.06

0.08

0.10

0.12

C
om

pu
ta

tio
n

Ti
m

e
(s

)

0 25 50 75 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ta
sk

 C
os

t

0 25 50 75 100
0

25

50

75

100

125

150

175

200

To
ta

l T
im

es
te

ps

5 10 15 18 25
Number of Modules

0.0

0.2

0.4

0.6

0.8

1.0

Q
ue

ry
 C

os
t

5 10 15 18 25
Number of Modules

0

1

2

3

To
ta

l F
ai

le
d

At
te

m
pt

s

5 10 15 18 25
Number of Modules

0.00

0.01

0.02

0.03

0.04

0.05

0.06

C
om

pu
ta

tio
n

Ti
m

e
(s

)

5 10 15 18 25
Number of Modules

0.00

0.01

0.02

0.03

0.04

0.05

Ta
sk

 C
os

t

5 10 15 18 25
Number of Modules

0

1

2

3

4

5

6

7

To
ta

l T
im

es
te

ps

Never Query Brute Force Graph Query Binary Tree Query Confidence Query Topo Query

Execute-First Query-Then-Execute Query-Until-Confident Query-Until-Confident-Workload-Aware Query-For-All

Figure 7: (top) Module selector comparison for varying the number of modules 𝑁 in the module graph 𝐺𝑀 , for the

Query-Until-Confident-Workload-Aware querying algorithm. (bottom) Querying algorithm comparison for varying the

number of modules 𝑁 in the module graph 𝐺𝑀 , for the GraphQuery module selector. Plots show median, upper quartile, and

lower quartile values across 100 trials (mean for Task Cost).

(e.g. closer confidence values) where numerical stability is a

concern.

• When confidence values differ from (1, 0.1), module

selector performance degrades at larger graph sizes due to

numerical underflow. We find that BinaryTreeQuery is

the most sensitive, followed by GraphQuery, followed by

BruteForce.

Recommendations. For module selectors, we recommend using

either BruteForce, GraphQuery, or ConfidenceQuery, with the

latter being the most scalable to increasing module graph size. For

querying algorithms, we recommend Query-until-Confident or

Query-until-Confident-Workload-Aware as they minimize

Total Failed Attempts and Total Timesteps.

F.3 Graph structure 𝐺𝑀
Full results for varying the graph structure 𝐺𝑀 across module

selectors and querying algorithms are shown in Fig. 8. Key

takeaways:

F.3.1 Module selectors.
• Query Cost. For the variable setting shown in Fig. 8, we find

that Query Cost is insensitive to the redundancy structure.

Across other variable settings, we generally observe that

the query cost is lower for the all-OR redundancy structure,

compared to the other redundancy structures, because fewer

queries are needed for the overall system output to be correct.

Additionally, the query cost for the OR-then-AND structure

is slightly higher than that for the AND-then-OR redundancy

structure (because overall system success is more likelywhen

the final module is an OR module).

• Total Failed Attempts. For the variable setting shown in

Fig. 8, we find that Total Failed Attempts is insensitive to

the redundancy structure (except for NeverQuery). Across

other variable settings, we observe that Total Failed Attempts
is lower for the all-OR redundancy structure. We additionally

observe that the relative ordering of module selectors

does not generally depend on the redundancy structure,

and proceeds roughly as follows (in descending order):

NeverQuery, BinaryTreeQuery, BruteForce, followed

by GraphQuery.

• Computation Time. We observe that Computation Time is
lower for the all-OR redundancy structure. GraphQuery

tends to have a higher Computation Time than the other

module selectors (regardless of the redundancy structure)

due to the computational complexity of parallel graph

creation + parallel shortest-path searches.

• Task Cost. For the variable setting shown in Fig. 8, we find

that Task Cost is insensitive to the redundancy structure

(except for NeverQuery). In other settings, NeverQuery

and BinaryTreeQuery only achieve complete success for

the all-OR architecture, and have no success for the other

redundancies.

• Total Timesteps. For the variable setting shown in Fig. 8,

we find that Total Timesteps is insensitive to the redundancy

structure (except for NeverQuery), with BinaryTreeQuery

having a slightly higher value across-the-board compared to

the other module selectors.

F.3.2 Querying algorithms.
• Query Cost. For the variable setting shown in Fig.

8, generally lower for most querying algorithms

in all-OR redundancy structure, compared to other

structures. In other low query cost settings: (1) higher

for Query-until-Confident-Workload-Aware compared

to other methods, (2) higher in the hybrid structures

(compared to the pure structures) across-the-board.

• Total Failed Attempts. Lower for all querying algorithms

in all-OR redundancy structure, compared to other

structures. We note the following rough ordering

across querying algorithms, regardless of graph

structure, in descending order: Execute-First >

Query-then-Execute > Query-until-Confident ∼
Query-until-Confident-Workload-Aware. We also

notice the following ordering across graph structures,

regardless of querying algorithm, in descending order:

OR-then-AND > all-AND > AND-then-OR > all-OR.

• Computation Time. Lower for all querying algorithms in

all-OR redundancy structure, compared to other structures.

We note that Query-Until-Confident-Workload-Aware

HRI ’26, March 16–19, 2026, Edinburgh, Scotland, UK Rohan Banerjee et al.

has slightly higher computation time than other querying

algorithms, independent of graph structure.

• Task Cost. Fairly consistent across graph structures. In other

settings, Query-Until-Confident-Workload-Aware

tends to have the highest success rate across all querying

algorithms, as it is able to recover in some settings where

other querying algorithms fail (e.g. AND-then-OR, and

OR-then-AND structures).

• Total Timesteps. Lower for most querying algorithms

in all-OR redundancy structure, compared to other

structures. WE note the following roughly consistent

ordering across querying algorithms, regardless of

graph structure, in descending order: Execute-First

> Query-then-Execute > Query-until-Confident ∼
Query-until-Confident-Workload-Aware, consistent

with the Total Failed Attempts trend.
Recommendations. For module selectors, we recommend using

either BruteForce, GraphQuery, or ConfidenceQuery, as all

3 have the best performance across redundancy structures. For

querying algorithms, we recommend Query-until-Confident

or Query-until-Confident-Workload-Aware perform best

across the metrics (for all redundancies except all-OR, where

Execute-First and Query-and-Execute outperform the other

querying algorithms in Query Cost and Total Timesteps).

F.4 Confidence values 𝑐𝑖
Full results for varying the confidence values 𝑐𝑖 across module

selectors and querying algorithms are shown in Fig. 9. Key

takeaways:

F.4.1 Module selectors.
• Query Cost. Generally higher when confidences are

closer together. Regardless of confidence level, generally

follows the following pattern in descending order:

BinaryTreeQuery > GraphQuery ∼ BruteForce >

NeverQuery.

• Total Failed Attempts. Generally higher when confidences

are closer together. Regardless of confidence level,

generally follows the following pattern in descending

order: NeverQuery, GraphQuery ∼ BruteForce,

BinaryTreeQuery.

• Computation Time. Generally higher when confidences are

closer together. GraphQuery has much higher Computation

Time, followed by BruteForce, BinaryTreeQuery and

NeverQuery.

• Task Cost. All module selectors (except NeverQuery) tend

to increase from 0.0 to 1.0 with less-separated confidences.

NeverQuery always has a value of 1.0, except in the all-OR

setting (not shown in Fig. 9).

• Total Timesteps. Generally higher when confidences

are closer together (for all module selectors except

NeverQuery).

F.4.2 Querying algorithms.
• Query Cost. Generally higher when confidences are closer

together. For low query cost settings (including Fig. 9),

Query-until-Confident-Workload-Aware has the

highest Query Cost compared to other querying algorithms.

• Total Failed Attempts. Generally higher across all querying

algorithms when confidences are closer together. Lower

for Query-until-Confident than Execute-First and

Query-then-Execute.

• Computation Time. Generally higher when

confidences are closer together. Slightly higher for

Query-until-Confident-Workload-Aware compared to

the other querying algorithms.

• Task Cost. Generally higher when confidences are closer

together. Lower for Query-until-Confident than

Execute-First andQuery-then-Execute.

• Total Timesteps. Generally higher when confidences are

closer together. Regardless of confidence score, Total
Timesteps is generally lower forQuery-until-Confident

compared to Execute-First andQuery-then-Execute.

Recommendations. For module selectors, we recommend

using either BruteForce or GraphQuery, as they are the most

competitive across metrics regardless of the confidence level. For

querying algorithms, we recommend Query-until-Confident

(unless in the all-OR setting, in which case Execute-First or

Query-then-Execute are the best at minimizing Total Timesteps).

F.5 Query Cost 𝑞𝑖
Full results for varying the confidence values 𝑐𝑖 across module

selectors and querying algorithms are shown in Fig. 10. Key

takeaways:

F.5.1 Module selectors.
• Query Cost. Higher Query Cost across-the-board as

we increase the cost of querying, which is expected.

BinaryTreeQuery generally has the highest Query Cost
(regardless of module query cost), while BruteForce and

GraphQuery are lower.

• Total Failed Attempts. Relatively invariant to the query cost

level.

• Computation Time. Generally highest for GraphQuery,

regardless of the query cost level. In ascending order for

the other module selectors, generally see NeverQuery, then

BruteForce, then BinaryTreeQuery.

• Task Cost. Generally consistent for all methods, regardless

of query cost level. For higher query cost settings and

confidence settings with less separation (not shown in Fig.

10), we do observe consistent a Task Cost value of 0.0 across
all settings for BinaryTreeQuery and NeverQuery.

• Total Timesteps. Values are also generally invariant as a

function of query cost, with BinaryTreeQuery having

a slightly higher value compared to BruteForce and

GraphQuery.

F.5.2 Querying algorithms.
• Query Cost. Query Cost generally increases as query cost

increases, as expected.

• Total Failed Attempts. Typical trend is Execute-First

> Query-then-Execute > Query-until-Confident ∼
Query-until-Confident-Workload-Aware, regardless

of the query cost setting. In some settings, Total Failed
Attempts increases slightly for Query-until-Confident-

Workload-Aware as a function of query cost.

• Computation Time. Generally comparable across

querying algorithms, invariant to query cost

setting. In some scenarios (e.g. in Fig. 10),

Query-until-Confident-Workload-Aware has a higher

computation time than the other querying algorithms.

• Task Cost. Generally comparable across querying

algorithms (0.0), invariant to query cost setting.

Sometimes observe degradation to 1.0 (in module

A Human-in-the-Loop Confidence-Aware Failure Recovery Framework for Modular Robot Policies HRI ’26, March 16–19, 2026, Edinburgh, Scotland, UK

all-AND all-OR AND-then-OR OR-then-AND
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Q
ue

ry
 C

os
t

all-AND all-OR AND-then-OR OR-then-AND
0

3

6

9

12

15

18

21

To
ta

l F
ai

le
d

At
te

m
pt

s

all-AND all-OR AND-then-OR OR-then-AND
0.000

0.001

0.002

0.003

0.004

0.005

C
om

pu
ta

tio
n

Ti
m

e
(s

)

all-AND all-OR AND-then-OR OR-then-AND
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 C
os

t

all-AND all-OR AND-then-OR OR-then-AND
0

3

6

9

12

15

18

To
ta

l T
im

es
te

ps

all-AND all-OR AND-then-OR OR-then-AND

Redundancy

0

1

2

3

4

5

6

Q
ue

ry
 C

os
t

all-AND all-OR AND-then-OR OR-then-AND

Redundancy

0

1

2

3

To
ta

l F
ai

le
d

At
te

m
pt

s

all-AND all-OR AND-then-OR OR-then-AND

Redundancy

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

C
om

pu
ta

tio
n

Ti
m

e
(s

)

all-AND all-OR AND-then-OR OR-then-AND

Redundancy

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ta
sk

 C
os

t

all-AND all-OR AND-then-OR OR-then-AND

Redundancy

0
2
4
6
8

10
12
14
16
18

To
ta

l T
im

es
te

ps

Never Query Graph Query Brute Force Binary Tree Query Confidence Query Topo Query

Execute-First Query-Then-Execute Query-Until-Confident Query-Until-Confident-Workload-Aware Query-For-All

Figure 8: Varying the graph redundancy structure for fixed querying algorithm (Query-until-confident-workload-aware;

top) and fixed module selector (GraphQuery; bottom). Plots show median values across 100 trials (mean for Task Cost).

(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Q
ue

ry
 C

os
t

(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)
0

3

6

9

12

15

18

21

To
ta

l F
ai

le
d

At
te

m
pt

s

(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

C
om

pu
ta

tio
n

Ti
m

e
(s

)

(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 C
os

t

(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)
0

3

6

9

12

15

18

To
ta

l T
im

es
te

ps

(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)

Confidences

0

1

2

3

4

5

6

Q
ue

ry
 C

os
t

(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)

Confidences

0
2
4
6
8

10
12
14
16

To
ta

l F
ai

le
d

At
te

m
pt

s

(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)

Confidences

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

C
om

pu
ta

tio
n

Ti
m

e
(s

)

(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)

Confidences

0.0

0.2

0.4

0.6

0.8

Ta
sk

 C
os

t

(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)

Confidences

0

3

6

9

12

15

18

To
ta

l T
im

es
te

ps

Never Query Graph Query Brute Force Binary Tree Query Confidence Query Topo Query

Execute-First Query-Then-Execute Query-Until-Confident Query-Until-Confident-Workload-Aware Query-For-All

Figure 9: Varying the confidence levels for fixed querying algorithm (Query-until-confident-workload-aware; top) and

fixed module selector (GraphQuery; bottom). Plots show median values across 100 trials (mean for Task Cost).

0.08 0.16 0.32 0.64
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q
ue

ry
 C

os
t

0.08 0.16 0.32 0.64
0

3

6

9

12

15

18

21

To
ta

l F
ai

le
d

At
te

m
pt

s

0.08 0.16 0.32 0.64
0.000

0.001

0.002

0.003

0.004

0.005

C
om

pu
ta

tio
n

Ti
m

e
(s

)

0.08 0.16 0.32 0.64
0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l I
nc

or
re

ct

0.08 0.16 0.32 0.64
0

3

6

9

12

15

18

To
ta

l T
im

es
te

ps

0.08 0.16 0.32 0.64
Workloads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Q
ue

ry
 C

os
t

0.08 0.16 0.32 0.64
Workloads

0

1

2

3

To
ta

l F
ai

le
d

At
te

m
pt

s

0.08 0.16 0.32 0.64
Workloads

0.000

0.001

0.002

0.003

0.004

0.005

C
om

pu
ta

tio
n

Ti
m

e
(s

)

0.08 0.16 0.32 0.64
Workloads

0.00

0.01

0.02

0.03

0.04

0.05

To
ta

l I
nc

or
re

ct

0.08 0.16 0.32 0.64
Workloads

0

1

2

3

4

5

6

7

To
ta

l T
im

es
te

ps

Never Query Graph Query Brute Force Binary Tree Query Confidence Query

Execute-First Query-Then-Execute Query-Until-Confident Query-Until-Confident-Workload-Aware

Figure 10: Varying the module query costs for fixed querying algorithm (Query-until-confident-workload-aware; top)

and fixed module selector (GraphQuery; bottom). Plots show median values across 100 trials (mean for Task Cost).

settings with smaller separation in confidences,

not shown in Fig. 10) for all methods besides

Query-until-Confident-Workload-Aware.

• Total Timesteps. Generally invariant to query cost setting.

Regardless of confidence score, Total Timesteps is generally
lower forQuery-until-Confident-Workload-Aware and

HRI ’26, March 16–19, 2026, Edinburgh, Scotland, UK Rohan Banerjee et al.

Query-until-Confident compared to Execute-First and

Query-then-Execute (except for the all-OR redundancy

structure, where the trend is flipped).

Recommendations. For module selectors, we recommend

using either BruteForce, GraphQuery, or ConfidenceQuery

as they are the most competitive across metrics regardless

of the module query cost. For querying algorithms, we

recommend Query-until-Confident-Workload-Aware

or Query-until-Confident (Query-until-Confident-

Workload-Aware if minimizing Query Cost and Total Failed
Attempts is most important; Query-until-Confident if

minimizing Computation Time is the most important).

F.6 Additional Ablation: Expert Confidence

We consider an ablation over an additional user variable: the expert

confidence value (𝑐expert, introduced in Sec. 3), to understand how

imperfect human feedback affects the performance of the module

selectors and querying algorithms. In our simulation, the expert

confidence 𝑐expert represents the probability that a module query

produces the correct logical value for that module. We consider

the following settings for 𝑐expert: [1, 0.8, 0.6, 0.4], which range from

a perfect expert (considered in Sec. 6) to a less confident expert.

Additionally, we adapt the module selectors to assign a confidence

of 𝑐expert to modules that have already been queried.

F.6.1 Module selectors. We find that performance degrades for

all module selectors as 𝑐expert decreases (Fig. 11), with Task
Cost degrading to 0 at the lowest confidence setting (𝑐expert =

0.4). For sufficiently low expert confidence, the module selectors

cannot determine whether a module has received the correct

feedback, leading to redundant querying of the same (upstream)

module. Across the module selectors, we find that Brute Force,

GraphQuery, and ConfidenceQuery perform best in the high

expert confidence regime. We also find that BinaryTreeQuery

tends to under-query regardless of expert confidence value, leading

to high Task Cost.

F.6.2 Querying algorithms. We again find that all querying

algorithms degrade in performance as 𝑐expert decreases (Fig.

11). For higher expert confidence values, we find that the two

Query-Until-Confident variants are the best in Total Timesteps
and Total Failed Attempts. For lower expert confidence values, we
note thatQuery-Until-Confident tends to over-query, because

the proxy task objective never becomes high enough to stop

querying, and Query-Until-Confident-Workload-Aware

tends to under-query, as the confidence gain due to querying is

insufficient to overcome the query cost.

Recommendations. For intermediate-to-high expert confidence

values, we would recommend either the BruteForce,

GraphQuery, or ConfidenceQuery module selectors, as they

achieve the lowest Task Cost with low Total Timesteps. Additionally,
we would recommend the two Query-Until-Confident querying

algorithms if minimizing Total Timesteps is the most important,

and the Execute-First and Query-then-Execute querying

algorithms in other scenarios.

G Additional Synthetic Experiments: Module

Heterogeneity

Fig. 12 compares the GraphQuery vs ConfidenceQuery module

selectors for additional values of the module confidences

and query cost variance 𝛽 (with fixed querying algorithm

Query-Until-Confident-Workload-Aware). We find that

GraphQuery performs at least as well as ConfidenceQuery

across these experimental settings.

H User Study Metrics

H.1 Subjective metrics

We asked the participants the following questions in terms

of Mental/Physical Demand, Effort, Subjective Success, and

Satisfaction, all on a Likert scale from 1-5:

(1) Mental/Physical Demand: For the last method, how

mentally/physically demanding was it for the robot to query

you?

(2) Effort: For the last method, how hard did you have to work

to make the robot pick up food items?

(3) Subjective Success: For the last method, how successful

was the robot in picking up food items?

(4) Satisfaction: For the last method, how satisfied are you

with how the robot balanced between trying to pickup

independently when possible and asking for help when

required?

H.2 Objective metrics

We define the following 3 objective metrics:

(1) Mean Queries Per Plate:
1

𝐵

∑𝐵
𝑏=1

∑𝑇𝑏
𝑡=1

1{queried at 𝑡},
where 𝐵 is the number of bites per plate and𝑇𝑏 is the number

of timesteps needed for bite 𝑏.

(2) MeanExecutions Per Plate:
1

𝐵

∑𝐵
𝑏=1

∑𝑇𝑏
𝑡=1

1{executed at 𝑡},
where 𝐵 and 𝑇𝑏 are defined above.

(3) Mean Successful Bites Per Plate:
1

𝐵

∑𝐵
𝑏=1

1{b succeeded},
where 𝐵 is defined above and we define bite 𝑏 to have

succeeded if the robot acquired the bite after 𝑇𝑏 timesteps.

I Full Acknowledgements

This work was partly funded by NSF CCF 2312774 and NSF

OAC-2311521, a LinkedIn Research Award, NSF IIS-244213, NSF

IIS #2132846, CAREER #2238792, a PCCW Affinito-Stewart Award,

and by an AI2050 Early Career Fellowship program at Schmidt

Sciences. Research reported in this publication was additionally

supported by the Eunice Kennedy Shriver National Institute Of

Child Health & Human Development of the National Institutes of

Health and the Office of the Director of the National Institutes of

Health under Award Number T32HD113301. The content is solely

the responsibility of the authors and does not necessarily represent

the official views of the National Institutes of Health.

The authors would like to additionally thank Yuanchen Ju

and Zhanxin Wu for helping with figure creation, and all of the

participants in our two in-lab user studies, as well as the two

participants in our in-home user study.

Received 2025-09-30; accepted 2025-12-23

A Human-in-the-Loop Confidence-Aware Failure Recovery Framework for Modular Robot Policies HRI ’26, March 16–19, 2026, Edinburgh, Scotland, UK

1.0 0.8 0.6 0.4
0.0

0.2

0.4

0.6

0.8

1.0

Q
ue

ry
 C

os
t

1.0 0.8 0.6 0.4
0

3

6

9

12

15

18

21

To
ta

l F
ai

le
d

At
te

m
pt

s
1.0 0.8 0.6 0.4

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

C
om

pu
ta

tio
n

Ti
m

e
(s

)

1.0 0.8 0.6 0.4
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 C
os

t

1.0 0.8 0.6 0.4
0

3

6

9

12

15

18

To
ta

l T
im

es
te

ps

1.0 0.8 0.6 0.4
Expert Confidence

0

1

2

3

4

5

6

Q
ue

ry
 C

os
t

1.0 0.8 0.6 0.4
Expert Confidence

0

3

6

9

12

15

18

21

To
ta

l F
ai

le
d

At
te

m
pt

s

1.0 0.8 0.6 0.4
Expert Confidence

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

C
om

pu
ta

tio
n

Ti
m

e
(s

)

1.0 0.8 0.6 0.4
Expert Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 C
os

t

1.0 0.8 0.6 0.4
Expert Confidence

0

3

6

9

12

15

18

To
ta

l T
im

es
te

ps

Never Query Graph Query Brute Force Binary Tree Query Confidence Query Topo Query

Execute-First Query-Then-Execute Query-Until-Confident Query-Until-Confident-Workload-Aware Query-For-All

Figure 11: Varying the expert query confidence for fixed querying algorithm (Query-until-Confident-Workload-Aware;

top) and fixed module selector (Graph-Query; bottom). Plots show median values across 100 trials (mean for Task Cost).

(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)
0
2
4
6
8

10
12
14
16

To
ta

l F
ai

le
d

At
te

m
pt

s

(a)

(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)
0.0

0.2

0.4

0.6

0.8

To
ta

l I
nc

or
re

ct

(0.8, 0.3) (0.75, 0.35) (0.7, 0.4) (0.65, 0.45) (0.6, 0.5)
0
2
4
6
8

10
12
14
16

To
ta

l F
ai

le
d

At
te

m
pt

s

(b)

(0.8, 0.3) (0.75, 0.35) (0.7, 0.4) (0.65, 0.45) (0.6, 0.5)
0.0

0.2

0.4

0.6

0.8

To
ta

l I
nc

or
re

ct

(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)
0
2
4
6
8

10
12
14
16

To
ta

l F
ai

le
d

At
te

m
pt

s

(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)
0.0

0.2

0.4

0.6

0.8

To
ta

l I
nc

or
re

ct

(0.8, 0.3) (0.75, 0.35) (0.7, 0.4) (0.65, 0.45) (0.6, 0.5)
0
2
4
6
8

10
12
14
16

To
ta

l F
ai

le
d

At
te

m
pt

s

(0.8, 0.3) (0.75, 0.35) (0.7, 0.4) (0.65, 0.45) (0.6, 0.5)
0.0

0.2

0.4

0.6

0.8

To
ta

l I
nc

or
re

ct

(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)

Confidences

0
2
4
6
8

10
12
14
16

To
ta

l F
ai

le
d

At
te

m
pt

s

(1.0, 0.1) (0.9, 0.2) (0.8, 0.3) (0.7, 0.4)

Confidences

0.0

0.2

0.4

0.6

0.8

To
ta

l I
nc

or
re

ct

(0.8, 0.3) (0.75, 0.35) (0.7, 0.4) (0.65, 0.45) (0.6, 0.5)

Confidences

0
2
4
6
8

10
12
14
16

To
ta

l F
ai

le
d

At
te

m
pt

s

(0.8, 0.3) (0.75, 0.35) (0.7, 0.4) (0.65, 0.45) (0.6, 0.5)

Confidences

0.0

0.2

0.4

0.6

0.8

To
ta

l I
nc

or
re

ct

 =
 0

.2
 =

 0
.4

 =
 0

.6

Graph Query Confidence Query

Figure 12: Comparison between GraphQuery and ConfidenceQuery, as a function of varying module confidences and query

cost uniform noise 𝛽 (for fixed querying algorithm:Query-Until-Confident-Workload-Aware), both in less overlapping

(left) and more overlapping (right) confidence regimes. Plots show median values across 100 trials (mean for Task Cost).

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Module Selectors
	4.1 Proxy Objective Optimization
	4.2 Binary Tree Query
	4.3 Graph Query

	5 Querying Algorithms
	6 Synthetic Simulation: Systematic Ablations
	6.1 Varying number of modules N
	6.2 Varying graph structure GM
	6.3 Varying confidence values ci
	6.4 Varying query costs qi

	7 Synthetic Simulation: Module Heterogeneity
	8 Robot-Assisted Bite Acquisition Experiments
	8.1 In-lab real-robot user study
	8.2 In-lab real-robot user study with module heterogeneity
	8.3 In-home real-robot user study

	9 Discussion
	References
	A Proxy Objectives
	B Algorithm Performance Analysis
	B.1 GraphQuery
	B.2 MIP

	C Bite Acquisition Architecture
	C.1 Calibration Datasets and Confidence Intervals
	C.2 Calibrated Confidence Scores
	C.3 Retrieval-Augmented Feedback for Error Recovery
	C.4 Query questions and feedback in user study

	D Bite Acquisition Architecture with Module Heterogeneity
	E Workload Model Conditioning
	F Additional Synthetic Experiments: Systematic Ablations
	F.1 Additional experimental setup details.
	F.2 Number of modules N
	F.3 Graph structure GM
	F.4 Confidence values ci
	F.5 Query Cost qi
	F.6 Additional Ablation: Expert Confidence

	G Additional Synthetic Experiments: Module Heterogeneity
	H User Study Metrics
	H.1 Subjective metrics
	H.2 Objective metrics

	I Full Acknowledgements

